Inverse Approximation Theorems in the Spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{(p,q)}(\sigma^{m-1})$$\end{document}

被引:0
作者
R. A. Lasuriya
机构
[1] National University of Science and Technology “MISiS”,
关键词
Fourier–Laplace series; best approximations; convolution; -derivative;
D O I
10.1134/S0001434621070087
中图分类号
学科分类号
摘要
引用
收藏
页码:80 / 91
页数:11
相关论文
共 34 条
[1]  
Lasuriya R. A.(2007)Direct and inverse theorems on the approximation of functions defined on a sphere in the space Ukrainian Math. J. 59 996-1009
[2]  
Lasuriya R. A.(2015)Direct and inverse theorems on the approximation of functions by Fourier–Laplace sums in the spaces Math. Notes 98 601-612
[3]  
Lasuriya R. A.(2019)Jackson-Type inequalities in the spaces Math. Notes 105 707-719
[4]  
Lasuriya R. A.(2015)Approximation of functions on the sphere by linear methods Ukrainian Math. J. 66 1680-1695
[5]  
Lasuriya R. A.(2003)Approximation characteristics of the spaces Proceedings of Institute of Mathematics of NAS of Ukraine. Extremal Problems in the Theory of Functions and Related Problems 46 89-115 E. M. Stein,
[6]  
Berens H.(1968) of functions defined on a sphere (Russian) Publ. Res. Inst. Math. Sci. A. 4 201-268
[7]  
Butzer P.Ł.(1965)Limiterungsverfahren von Reihen medrdimensionver Kugelfunktionen und deren Saturationsverhalten J. Anal. Math. 15 193-220
[8]  
Pawelke S.(2005)On the behavior of special classes of ultrasherical expansions. I Ukrainian Math. J. 57 347-363
[9]  
Askey R.(1951)On Jackson-type inequalities for functions defined on a sphere Izv. Akad. Nauk SSSR Ser. Mat. 15 219-242
[10]  
Wainger S.(1958)On the order of the best approximations of continuous functions Nauchn. Dokl. Vyssh. Shkoly. Ser. Fiz.-Mat. Nauk 0 47-53