In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction

被引:0
|
作者
Caroline Wang
Bin Han
Bhrij Patel
Cynthia Rudin
机构
[1] The University of Texas at Austin,Department of Computer Science
[2] The University of Washington,Department of Information Science
[3] Duke University,Department of Computer Science
[4] Duke University,Department of Statistical Science
来源
关键词
Criminal recidivism; Interpretability; Fairness; COMPAS; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:519 / 581
页数:62
相关论文
共 50 条
  • [1] In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction
    Wang, Caroline
    Han, Bin
    Patel, Bhrij
    Rudin, Cynthia
    JOURNAL OF QUANTITATIVE CRIMINOLOGY, 2023, 39 (02) : 519 - 581
  • [2] Prediction Machine Learning Models on Propensity Convicts to Criminal Recidivism
    Kovalchuk, Olha
    Karpinski, Mikolaj
    Banakh, Serhiy
    Kasianchuk, Mykhailo
    Shevchuk, Ruslan
    Zagorodna, Nataliya
    INFORMATION, 2023, 14 (03)
  • [3] Accurate band gap prediction based on an interpretable ?-machine learning
    Zhang, Lingyao
    Su, Tianhao
    Li, Musen
    Jia, Fanhao
    Hu, Shuobo
    Zhang, Peihong
    Ren, Wei
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [4] An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU
    Nemati, Shamim
    Holder, Andre
    Razmi, Fereshteh
    Stanley, Matthew D.
    Clifford, Gari D.
    Buchman, Timothy G.
    CRITICAL CARE MEDICINE, 2018, 46 (04) : 547 - 553
  • [5] Support vector machine to criminal recidivism prediction
    Kovalchuk, Olha
    Shevchuk, Ruslan
    Babala, Ludmila
    Kasianchuk, Mykhailo
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, 70 (03) : 691 - 697
  • [6] Machine Learning and Criminal Justice: A Systematic Review of Advanced Methodology for Recidivism Risk Prediction
    Travaini, Guido Vittorio
    Pacchioni, Federico
    Bellumore, Silvia
    Bosia, Marta
    De Micco, Francesco
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (17)
  • [7] Accurate band gap prediction based on an interpretable Delta-machine learning
    Zhang, Lingyao
    Su, Tianhao
    Li, Musen
    Jia, Fanhao
    Hu, Shuobo
    Zhang, Peihong
    Ren, Wei
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [8] The Application of Machine Learning to a General Risk-Need Assessment Instrument in the Prediction of Criminal Recidivism
    Ghasemi, Mehdi
    Anvari, Daniel
    Atapour, Mahshid
    Stephen Wormith, J.
    Stockdale, Keira C.
    Spiteri, Raymond J.
    CRIMINAL JUSTICE AND BEHAVIOR, 2021, 48 (04) : 518 - 538
  • [9] Accuracy, Fairness, and Interpretability of Machine Learning Criminal Recidivism Models
    Ingram, Eric
    Gursoy, Furkan
    Kakadiaris, Ioannis A.
    2022 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, BDCAT, 2022, : 233 - 241
  • [10] Interpretable classification models for recidivism prediction
    Zeng, Jiaming
    Ustun, Berk
    Rudin, Cynthia
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2017, 180 (03) : 689 - 722