Development of micro-mirror slicer integral field unit for space-borne solar spectrographs

被引:5
作者
Suematsu Y. [1 ]
Saito K. [2 ]
Koyama M. [2 ]
Enokida Y. [2 ]
Okura Y. [2 ]
Nakayasu T. [2 ]
Sukegawa T. [2 ]
机构
[1] National Astronomical Observatory of Japan, 21-1 Osawa 2-chome, Mitaka, 181-8588, Tokyo
[2] Canon Inc., 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo
关键词
Image slicer; Integral field spectroscopy; Integral field unit; Micro image slicer;
D O I
10.1007/s12567-017-0157-5
中图分类号
学科分类号
摘要
We present an innovative optical design for image slicer integral field unit (IFU) and a manufacturing method that overcomes optical limitations of metallic mirrors. Our IFU consists of a micro-mirror slicer of 45 arrayed, highly narrow, flat metallic mirrors and a pseudo-pupil-mirror array of off-axis conic aspheres forming three pseudo slits of re-arranged slicer images. A prototype IFU demonstrates that the final optical quality is sufficiently high for a visible light spectrograph. Each slicer micro-mirror is 1.58 mm long and 30 μ m wide with surface roughness ≤ 1 nm rms, and edge sharpness ≤ 0.1 μ m, etc. This IFU is small size and can be implemented in a multi-slit spectrograph without any moving mechanism and fore optics, in which one slit is real and the others are pseudo slits from the IFU. The IFU mirrors were deposited by a space-qualified, protected silver coating for high reflectivity in visible and near IR wavelength regions. These properties are well suitable for space-borne spectrograph such as the future Japanese solar space mission SOLAR-C. We present the optical design, performance of prototype IFU, and space qualification tests of the silver coating. © 2017, CEAS.
引用
收藏
页码:421 / 431
页数:10
相关论文
共 19 条
[1]  
Allington-Smith J., Content R., Sampling and background subtraction in fiber-lenslet integral field spectrograph, PASP, 110, pp. 1216-1234, (1998)
[2]  
J.: 3D instrumentation, science perspectives for 3D spectroscopy, Kissler-Patig, M., Walsh, J.R., Roth, M.M. (eds.) Proceedings of ESO Workshop, pp. 3–13. Springer, (2007)
[3]  
Bershady M.A., 3D spectroscopic instrumentation, 3D spectroscopy in astronomy, 17, (2009)
[4]  
Suematsu Y., Imai H., Yoshimura K., Ishigaki T., Ueno S., Hayashi T., Ohtani H., Tridimensional spectroscopic observations of the sun with a microlens-array spectrograph, high resolution solar physics: theory, observations, and techniques, ASP Conference Series 183, pp. 303-310, (1999)
[5]  
Lin H., Versteegh A., VisIRIS: a visible/IR imaging spectropolarimeter based on a birefringent fiber-optic image slicer, Proc. SPIE, 6269, (2006)
[6]  
Lin H., SPIES: the spectropolarimetric imager for the energetic sun, Proc. SPIE, 8446, (2012)
[7]  
Katsukawa Y., Ichimoto K., Suematsu Y., Hara H., Kano R., Shimizu T., Matsuzaki K., Design progress of the solar UV–vis–IR telescope (SUVIT) aboard SOLAR-C, Proceedings of SPIE 8862, article id, (2013)
[8]  
Ren D., Keller C., Plymate C., An IFU for diffraction-limited 3D spectroscopic imaging: laboratory and on-site tests, Proceedings of SPIE 7438, article id, (2009)
[9]  
Calcines A., Lopez R.L., Collados M., MuSICa: the multi-slit image slicer for the EST spectrograph. J. Astron. Instr. 2, 1, id, 1350009, (2013)
[10]  
Vives S., Prieto E., Salaun Y., Godefroy P., New technological developments in integral field spectroscopy, Proceedings of SPIE 7018, article id, 70182N, (2008)