N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 JT supergravity and matrix models

被引:0
作者
Gustavo J. Turiaci
Edward Witten
机构
[1] Institute for Advanced Study,Physics Department
[2] University of Washington,undefined
关键词
Black Holes; Extended Supersymmetry; Matrix Models;
D O I
10.1007/JHEP12(2023)003
中图分类号
学科分类号
摘要
Generalizing previous results for N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 0 and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1, we analyze N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 JT supergravity on asymptotically AdS2 spaces with arbitrary topology and show that this theory of gravity is dual, in a holographic sense, to a certain random matrix ensemble in which supermultiplets of different R-charge are statistically independent and each is described by its own N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 random matrix ensemble. We also analyze the case with a time-reversal symmetry, either commuting or anticommuting with the R-charge. In order to compare supergravity to random matrix theory, we develop an N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 analog of the recursion relations for Weil-Petersson volumes originally discovered by Mirzakhani in the bosonic case.
引用
收藏
相关论文
共 91 条
[1]  
Gibbons GW(1977) = 2 Phys. Rev. D 15 2752-undefined
[2]  
Hawking SW(2003) = 2 JHEP 04 021-undefined
[3]  
Maldacena JM(1985)/ Nucl. Phys. B 252 343-undefined
[4]  
Jackiw R(2015) = 4 JHEP 11 014-undefined
[5]  
Almheiri A(2016) = 2 JHEP 07 139-undefined
[6]  
Polchinski J(2023) = 4 Living Rev. Rel. 26 4-undefined
[7]  
Engelsöy J(2020)undefined Adv. Theor. Math. Phys. 24 1475-undefined
[8]  
Mertens TG(2001)undefined Fortsch. Phys. 49 3-undefined
[9]  
Verlinde H(2019)undefined JHEP 10 062-undefined
[10]  
Mertens TG(2023)undefined SciPost Phys. 14 128-undefined