Bivariate spline interpolation with optimal approximation order

被引:0
作者
O. Davydov
G. Nürnberger
F. Zeilfelder
机构
[1] Mathematisches Institut,Justus
[2] Fakultät für Mathematik und Informatik,Liebig
来源
Constructive Approximation | 2001年 / 17卷
关键词
Primary 41A25; 41A63; Secondary 41A05; 41A15; 65D05; 65D07; Bivariate spline; Triangulation; Interpolation; Approximation order; Minimally Supported basis; Locally linearly independent basis;
D O I
暂无
中图分类号
学科分类号
摘要
Let Δ be a triangulation of some polygonal domain Ω ⊂ R2 and let Sqr(Δ) denote the space of all bivariate polynomial splines of smoothness r and degree q with respect to Δ. We develop the first Hermite-type interpolation scheme for Sqr(Δ), q ≥ 3r + 2, whose approximation error is bounded above by Khq+1, where h is the maximal diameter of the triangles in Δ, and the constant K only depends on the smallest angle of the triangulation and is independent of near-degenerate edges and near-singular vertices. Moreover, the fundamental functions of our scheme are minimally supported and form a locally linearly independent basis for a superspline subspace of Sqr(Δ). This shows that the optimal approximation order can be achieved by using minimally supported splines. Our method of proof is completely different from the quasi-interpolation techniques for the study of the approximation power of bivariate splines developed in [7] and [18].
引用
收藏
页码:181 / 208
页数:27
相关论文
共 39 条
[1]  
de Boor C.(1983)Bivariate box splines and smooth pp functions on a three direction mesh J. Comput. Appl. Math. 9 13-28
[2]  
Höllig K.(1988)Approximation power of smooth bivariate pp functions Math. Z. 197 343-363
[3]  
de Boor C.(1993)A sharp upper bound on the approximation order of smooth bivariate pp functions J. Approx. Theory 72 24-33
[4]  
Höllig K.(1994)Least supported bases and local linear independence Numer. Math. 67 289-301
[5]  
de Boor C.(1995)Stability of optimal order approximation by bivariate splines over arbitrary triangulations Trans. Amer. Math. Soc. 347 3301-3318
[6]  
Jia R.-Q.(1990)On bivariate super vertex spline Constr. Approx. 6 399-419
[7]  
Carnicer J. M.(1966)Approximation et interpolation des fonctions différentiables de plusieurs variables Ann. Sci. Ecole Norm. 83 271-341
[8]  
Peña J. M.(1998)Approximation order of bivariate spline interpolation for arbitrary smoothness J. Comput. Appl. Math. 90 117-134
[9]  
Chui C. K.(1999)On almost interpolation and locally linearly independent bases East J. Approx. 5 67-88
[10]  
Hong D.(1991)Spaces of bivariate spline functions over triangulation Approx. Theory Appl. 7 56-75