Analytic Advantages of Spherically Symmetric Step-Function Potentials in the Dirac Equation with Scalar and Fourth Component of Vector Potential

被引:0
作者
G. J. Papadopoulos
C. G. Koutroulos
M. E. Grypeos
机构
[1] Aristotle University of Thessaloniki,Department of Theoretical Physics
来源
International Journal of Theoretical Physics | 2000年 / 39卷
关键词
Field Theory; Elementary Particle; Quantum Field Theory; Dirac Equation; Potential Parameter;
D O I
暂无
中图分类号
学科分类号
摘要
The root mean square radii of the particle orbits are calculated (semi)analyticallyfor every bound state, using the Dirac equation with a scalar potentialUs andfourth component of a vector potentialUv in the case of a spherically symmetricstep-function shape with the same radiusR for these potentials. In addition, a(semi)analytic expression of the expectation value of the corresponding potentialenergy operator is derived. For the above quantities, expressions of the energyeigenvalues in terms of the potential parameters are needed and approximateformulas may be used in certain cases. This study emphasizes the analyticadvantages of the relativistic, spherically symmetric step-function potential model.Its applicability is discussed in connection with a problem of physical interest,namely that of the motion of a Λ particle in hypernuclei.
引用
收藏
页码:455 / 468
页数:13
相关论文
共 23 条
[1]  
Daskaloyannis C. B.(1984)undefined Phys. Lett. 134B 147-undefined
[2]  
Grypeos M. E.(1956)undefined Phys. Rev. 103 469-undefined
[3]  
Koutroulos C. G.(1974)undefined Ann. Phys. 83 491-undefined
[4]  
Massen S. E.(1977)undefined Sov. J. Part. Nucl. 8 371-undefined
[5]  
Saloupis D. S.(1984)undefined Nucl. Phys. A 415 497-undefined
[6]  
Duerr H. D.(1989)undefined Phys. Rev. C 40 275-undefined
[7]  
Walecka J. D.(1994)undefined Int. J. Mod. Phys. E 3 939-undefined
[8]  
Savushkin L. N.(1994)undefined Phys. Rev. A 50 29-undefined
[9]  
Fomenko V. N.(1993)undefined Prog. Theor. Phys. 90 1039-undefined
[10]  
Bouyssy A.(1976)undefined Ann. Phys. 102 226-undefined