On the initial value problem for the two-coupled Camassa–Holm system in Besov spaces

被引:0
作者
Haiquan Wang
Gezi Chong
机构
[1] Northwest University,School of Mathematics
来源
Monatshefte für Mathematik | 2020年 / 193卷
关键词
The two-coupled Camassa–Holm system; Non-uniformly continuous dependence; Hölder continuity; Besov spaces; 35B30; 35G25;
D O I
暂无
中图分类号
学科分类号
摘要
Considered herein is the Cauchy problem for the two-coupled Camassa–Holm system. Based on the local well-posedness results for this problem, it is shown that the solution map z0↦z(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_{0}\mapsto z(t)$$\end{document} of this problem in the periodic case is not uniformly continuous in Besov spaces Bp,rs(T)×Bp,rs(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{s}_{p,r}(\mathbb {T})\times B^{s}_{p,r}(\mathbb {T}) $$\end{document} with s>max{3/2,1+1/p},1≤p,r≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>\max \{3/2,1+1/p\}, 1\le p,r\le \infty $$\end{document} by using the method of approximate solutions. In the non-periodic case, the non-uniform continuity of this solution map in Besov spaces B2,rs(R)×B2,rs(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{s}_{2,r}(\mathbb {R})\times B^{s}_{2,r}(\mathbb {R}) $$\end{document} with s>3/2,2≤r≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>3/2, 2\le r\le \infty $$\end{document} is established. Finally, the Hölder continuity of the solution map in Besov spaces is proved.
引用
收藏
页码:479 / 505
页数:26
相关论文
共 39 条
[31]   Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces [J].
YANG MingHua ;
FU ZunWei ;
SUN JinYi .
Science China(Mathematics), 2017, 60 (10) :1837-1856
[32]   Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces [J].
MingHua Yang ;
ZunWei Fu ;
JinYi Sun .
Science China Mathematics, 2017, 60 :1837-1856
[33]   Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces [J].
Yang, MingHua ;
Fu, ZunWei ;
Sun, JinYi .
SCIENCE CHINA-MATHEMATICS, 2017, 60 (10) :1837-1856
[34]   The optimal decay estimates on the framework of Besov spaces for the Euler-Poisson two-fluid system [J].
Xu, Jiang ;
Kawashima, Shuichi .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (10) :1813-1844
[35]   Non-uniform continuous dependence on initial data for a two-component Novikov system in Besov space [J].
Wu, Xing ;
Cao, Jie .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
[36]   WELL-POSEDNESS FOR TWO TYPES OF GENERALIZED KELLER-SEGEL SYSTEM OF CHEMOTAXIS IN CRITICAL BESOV SPACES [J].
Zhai, Zhichun .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) :287-308
[37]   Non-uniform continuity on initial data for the two-component b-family system in Besov space [J].
Wu, Xing ;
Li, Cui ;
Cao, Jie .
MONATSHEFTE FUR MATHEMATIK, 2023, 201 (02) :547-563
[38]   Non-uniform continuity on initial data for the two-component b-family system in Besov space [J].
Xing Wu ;
Cui Li ;
Jie Cao .
Monatshefte für Mathematik, 2023, 201 :547-563
[39]   The local well-posedness, blow-up criteria and Gevrey regularity of solutions for a two-component high-order Camassa-Holm system [J].
Zhang, Lei ;
Li, Xiuting .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 :414-440