On the initial value problem for the two-coupled Camassa–Holm system in Besov spaces

被引:0
作者
Haiquan Wang
Gezi Chong
机构
[1] Northwest University,School of Mathematics
来源
Monatshefte für Mathematik | 2020年 / 193卷
关键词
The two-coupled Camassa–Holm system; Non-uniformly continuous dependence; Hölder continuity; Besov spaces; 35B30; 35G25;
D O I
暂无
中图分类号
学科分类号
摘要
Considered herein is the Cauchy problem for the two-coupled Camassa–Holm system. Based on the local well-posedness results for this problem, it is shown that the solution map z0↦z(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_{0}\mapsto z(t)$$\end{document} of this problem in the periodic case is not uniformly continuous in Besov spaces Bp,rs(T)×Bp,rs(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{s}_{p,r}(\mathbb {T})\times B^{s}_{p,r}(\mathbb {T}) $$\end{document} with s>max{3/2,1+1/p},1≤p,r≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>\max \{3/2,1+1/p\}, 1\le p,r\le \infty $$\end{document} by using the method of approximate solutions. In the non-periodic case, the non-uniform continuity of this solution map in Besov spaces B2,rs(R)×B2,rs(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{s}_{2,r}(\mathbb {R})\times B^{s}_{2,r}(\mathbb {R}) $$\end{document} with s>3/2,2≤r≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>3/2, 2\le r\le \infty $$\end{document} is established. Finally, the Hölder continuity of the solution map in Besov spaces is proved.
引用
收藏
页码:479 / 505
页数:26
相关论文
共 39 条
  • [1] On the initial value problem for the two-coupled Camassa-Holm system in Besov spaces
    Wang, Haiquan
    Chong, Gezi
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (02): : 479 - 505
  • [2] Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) : 8686 - 8700
  • [3] ON THE INITIAL VALUE PROBLEM FOR HIGHER DIMENSIONAL CAMASSA-HOLM EQUATIONS
    Yan, Kai
    Yin, Zhaoyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) : 1327 - 1358
  • [4] Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces: Revisited
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 390 : 426 - 450
  • [5] Well-posedness of the modified Camassa–Holm equation in Besov spaces
    Hao Tang
    Zhengrong Liu
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1559 - 1580
  • [6] The Cauchy problem for the generalized Camassa-Holm equation in Besov space
    Yan, Wei
    Li, Yongsheng
    Zhang, Yimin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) : 2876 - 2901
  • [7] On the Cauchy problem for the two-component Camassa–Holm system
    Guilong Gui
    Yue Liu
    Mathematische Zeitschrift, 2011, 268 : 45 - 66
  • [8] The Cauchy problem for generalized fractional Camassa–Holm equation in Besov space
    Lei Mao
    Hongjun Gao
    Monatshefte für Mathematik, 2021, 195 : 451 - 475
  • [9] The Cauchy problem for fractional Camassa-Holm equation in Besov space
    Fan, Lili
    Gao, Hongjun
    Wang, Junfang
    Yan, Wei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61 (61)
  • [10] Well-posedness of the modified Camassa-Holm equation in Besov spaces
    Tang, Hao
    Liu, Zhengrong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1559 - 1580