Determinability of Semirings of Continuous Nonnegative Functions with Max-Plus by the Lattices of Their Subalgebras

被引:0
作者
V. V. Sidorov
机构
[1] Vyatka State University,
来源
Lobachevskii Journal of Mathematics | 2019年 / 40卷
关键词
semiring of continuous functions; subalgebra; lattice of subalgebras; isomorphism; Hewitt space; max-addition;
D O I
暂无
中图分类号
学科分类号
摘要
Denote by R+∨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}_+^\vee$$\end{document} the semifield with zero of nonnegative real numbers with operations of max-addition and multiplication. Let X be a topological space and C∨(X) be the semiring of continuous nonnegative functions on X with pointwise operation max-addition and multiplication of functions. By a subalgebra we mean a nonempty subset A of C∨(X) such that f ∨ g, fg, rf ∈ A for any f, g ∈ A, r∈R+∨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \in \mathbb{R}_+^\vee$$\end{document}. We consider the lattice A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{A}$$\end{document}(C∨(X)) of subalgebras of the semiring C∨(X) and its sublattice A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{A}_1$$\end{document}(C∨(X)) of subalgebras with unity. The main result of the paper is the proof of the definability of the semiring C∨(X) both by the lattice A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{A}$$\end{document}(C∨(X)) and by its sublattice A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{A}_1$$\end{document}(C∨(X)).
引用
收藏
页码:90 / 100
页数:10
相关论文
共 8 条
[1]  
Gelfand I. M.(1939)On rings of continuous functions on topological spaces Dokl. Akad. Nauk SSSR 22 11-15
[2]  
Kolmogorov A. N.(1948)Rings of real–valued continuous functions. I Trans. Am. Math. Soc. 64 45-99
[3]  
Hewitt E.(1997)Lattice of subalgebras of the ring of continuous functions and Hewitt spaces Mat. Zam. 62 687-693
[4]  
Vechtomov E. M.(1998)Semirings of continuous nonnegative functions: divisibility, ideals, congruences Fundam. Prikl. Mat. 4 493-510
[5]  
Varankina V. I.(2017)Determinability of Hewitt spaces by the lattices of subalgebras with unit of semifields of continuous positive functions with max–plus Lobachevskii J. Math. 38 741-750
[6]  
Vechtomov E. M.(undefined)undefined undefined undefined undefined-undefined
[7]  
Semenova I. A.(undefined)undefined undefined undefined undefined-undefined
[8]  
Sidorov V. V.(undefined)undefined undefined undefined undefined-undefined