Hipster random walks

被引:0
|
作者
L. Addario-Berry
H. Cairns
L. Devroye
C. Kerriou
R. Mitchell
机构
[1] McGill University,Department of Mathematics and Statistics
[2] Cornell University,Department of Mathematics
[3] McGill University,School of Computer Science
来源
Probability Theory and Related Fields | 2020年 / 178卷
关键词
Recursive distributional equations; Random trees; Numerical analysis; Burgers’ equation; Porous medium equation; PDEs; Interacting particle systems; 60F05; 65M75; 60B10; 60G18;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and study a family of random processes on trees we call hipster random walks, special instances of which we heuristically connect to the min-plus binary trees introduced by Robin Pemantle and studied by Auffinger and Cable (Pemantle’s Min-Plus Binary Tree, 2017. arXiv:1709.07849 [math.PR]), and to the critical random hierarchical lattice studied by Hambly and Jordan (Adv Appl Probab 36(3):824–838, 2004. https://doi.org/10.1239/aap/1093962236). We prove distributional convergence for the processes, after rescaling, by showing that their evolutions can be understood as a discrete analogues of certain convection–diffusion equations, then using a combination of coupling arguments and results from the numerical analysis literature on convergence of numerical approximations of PDEs.
引用
收藏
页码:437 / 473
页数:36
相关论文
共 50 条
  • [21] Random Sequential Adsorption on Random Trees
    Aidan Sudbury
    Journal of Statistical Physics, 2009, 136 : 51 - 58
  • [22] Random Walk on Random Infinite Looptrees
    Jakob E. Björnberg
    Sigurdur Örn Stefánsson
    Journal of Statistical Physics, 2015, 158 : 1234 - 1261
  • [23] Random Sequential Adsorption on Random Trees
    Sudbury, Aidan
    JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (01) : 51 - 58
  • [24] Random Walk on Random Infinite Looptrees
    Bjornberg, Jakob E.
    Stefansson, Sigurdur Orn
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (06) : 1234 - 1261
  • [25] Scaling limit of critical random trees in random environment
    Conchon-Kerjan, Guillaume
    Kious, Daniel
    Mailler, Cecile
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [26] ROOT FINDING ALGORITHMS AND PERSISTENCE OF JORDAN CENTRALITY IN GROWING RANDOM TREES
    Banerjee, Sayan
    Bhamidi, Shankar
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (03): : 2180 - 2210
  • [27] Random walkers versus random crowds: Diffusion of large matrices
    Gudowska-Nowak, Ewa
    Janik, Romuald
    Jurkiewicz, Jerzy
    Nowak, Maciej A.
    Wieczorek, Waldemar
    CHEMICAL PHYSICS, 2010, 375 (2-3) : 380 - 385
  • [28] McKean-Vlasov limit for interacting random processes in random media
    Pra, PD
    denHollander, F
    JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (3-4) : 735 - 772
  • [29] On the profile of random trees
    Drmota, M
    Gittenberger, B
    RANDOM STRUCTURES & ALGORITHMS, 1997, 10 (04) : 421 - 451
  • [30] On the contour of random trees
    Gittenberger, B
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (04) : 434 - 458