Global existence and finite time blow-up for a class of thin-film equation

被引:0
作者
Zhihua Dong
Jun Zhou
机构
[1] Southwest University,School of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2017年 / 68卷
关键词
Thin-film equation; Potential wells; Global existence; Blow-up; 35B40; 35K58; 35K35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a class of thin-film equation, which was considered in Li et al. (Nonlinear Anal Theory Methods Appl 147:96–109, 2016), where the case of lower initial energy (J(u0)≤d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)\le d$$\end{document} and d is a positive constant) was discussed, and the conditions on global existence or blow-up are given. We extend the results of this paper on two aspects: Firstly, we consider the upper and lower bounds of blow-up time and asymptotic behavior when J(u0)<d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)<d$$\end{document}; secondly, we study the conditions on global existence or blow-up when J(u0)>d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)>d$$\end{document}.
引用
收藏
相关论文
共 50 条
[41]   Global existence and blow-up results for a classical semilinear parabolic equation [J].
Ma, Li .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (04) :587-592
[42]   Global existence and blow-up of solutions for a nonlinear wave equation with memory [J].
Fei Liang ;
Hongjun Gao .
Journal of Inequalities and Applications, 2012
[43]   Global existence and blow-up phenomena for the weakly dissipative Novikov equation [J].
Yan, Wei ;
Li, Yongsheng ;
Zhang, Yimin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :2464-2473
[44]   Global existence and blow-up of solutions for a nonlinear wave equation with memory [J].
Liang, Fei ;
Gao, Hongjun .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[45]   On the global existence and blow-up for the double dispersion equation with exponential term [J].
Su, Xiao ;
Zhang, Hongwei .
ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (01) :467-491
[46]   A simple kinetic equation of swarm formation: Blow-up and global existence [J].
Lachowicz, Miroslaw ;
Leszczynski, Henryk ;
Parisot, Martin .
APPLIED MATHEMATICS LETTERS, 2016, 57 :104-107
[47]   Global existence and blow-up of the solutions for the multidimensional generalized Boussinesq equation [J].
Wang, Ying ;
Mu, Chunlai .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (12) :1403-1417
[48]   Global existence and blow-up results for a classical semilinear parabolic equation [J].
Li Ma .
Chinese Annals of Mathematics, Series B, 2013, 34 :587-592
[49]   CONSERVED QUANTITIES, GLOBAL EXISTENCE AND BLOW-UP FOR A GENERALIZED CH EQUATION [J].
Wei, Long ;
Qiao, Zhijun ;
Wang, Yang ;
Zhou, Shouming .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (03) :1733-1748
[50]   Global Existence and Blow-up of Solutions for a Class of Steklov Parabolic Problems [J].
Lamaizi, A. ;
Zerouali, A. ;
Chakrone, O. ;
Karim, B. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42