Global existence and finite time blow-up for a class of thin-film equation

被引:0
作者
Zhihua Dong
Jun Zhou
机构
[1] Southwest University,School of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2017年 / 68卷
关键词
Thin-film equation; Potential wells; Global existence; Blow-up; 35B40; 35K58; 35K35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a class of thin-film equation, which was considered in Li et al. (Nonlinear Anal Theory Methods Appl 147:96–109, 2016), where the case of lower initial energy (J(u0)≤d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)\le d$$\end{document} and d is a positive constant) was discussed, and the conditions on global existence or blow-up are given. We extend the results of this paper on two aspects: Firstly, we consider the upper and lower bounds of blow-up time and asymptotic behavior when J(u0)<d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)<d$$\end{document}; secondly, we study the conditions on global existence or blow-up when J(u0)>d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)>d$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] THE BLOW-UP AND GLOBAL EXISTENCE OF SOLUTIONS OF CAUCHY PROBLEMS FOR A TIME FRACTIONAL DIFFUSION EQUATION
    Zhang, Quan-Guo
    Sun, Hong-Rui
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 46 (01) : 69 - 92
  • [32] Blow-Up and Global Existence of Solutions for the Time Fractional Reaction-Diffusion Equation
    Shi, Linfei
    Cheng, Wenguang
    Mao, Jinjin
    Xu, Tianzhou
    [J]. MATHEMATICS, 2021, 9 (24)
  • [33] Global Existence and Finite Time Blow-up for the m-Laplacian Parabolic Problem
    Pang, Yue
    Radulescu, Vicentiu D.
    Xu, Run Zhang
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (08) : 1497 - 1524
  • [34] Global existence and blow-up of solutions to a nonlocal parabolic equation with singular potential
    Feng, Min
    Zhou, Jun
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (02) : 1213 - 1242
  • [35] Global Existence and Finite Time Blow-up for the m-Laplacian Parabolic Problem
    Yue Pang
    Vicenţiu D. Rădulescu
    Run Zhang Xu
    [J]. Acta Mathematica Sinica, English Series, 2023, 39 : 1497 - 1524
  • [36] Some New Results on the Global Existence and Blow-Up for a Class of Pseudo-parabolic Equation
    Wang, Kailun
    Xu, Guangyu
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2025, 22 (02)
  • [37] A blow-up result for nonlocal thin-film equation with positive initial energy
    Polat, Mustafa
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (03) : 1797 - 1807
  • [38] Global Existence and Blow-Up Results for a Classical Semilinear Parabolic Equation
    Li MA
    [J]. ChineseAnnalsofMathematics(SeriesB), 2013, 34 (04) : 587 - 592
  • [39] OPTIMAL CONDITIONS OF GLOBAL EXISTENCE AND BLOW-UP FOR A NONLINEAR PARABOLIC EQUATION
    Jiang, Yi
    Luo, Chuan
    [J]. ACTA MATHEMATICA SCIENTIA, 2016, 36 (03) : 872 - 880
  • [40] ON GLOBAL EXISTENCE AND BLOW-UP FOR DAMPED STOCHASTIC NONLINEAR SCHRODINGER EQUATION
    Cui, Jianbo
    Hong, Jialin
    Sun, Liying
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (12): : 6837 - 6854