Global existence and finite time blow-up for a class of thin-film equation

被引:0
作者
Zhihua Dong
Jun Zhou
机构
[1] Southwest University,School of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2017年 / 68卷
关键词
Thin-film equation; Potential wells; Global existence; Blow-up; 35B40; 35K58; 35K35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a class of thin-film equation, which was considered in Li et al. (Nonlinear Anal Theory Methods Appl 147:96–109, 2016), where the case of lower initial energy (J(u0)≤d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)\le d$$\end{document} and d is a positive constant) was discussed, and the conditions on global existence or blow-up are given. We extend the results of this paper on two aspects: Firstly, we consider the upper and lower bounds of blow-up time and asymptotic behavior when J(u0)<d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)<d$$\end{document}; secondly, we study the conditions on global existence or blow-up when J(u0)>d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)>d$$\end{document}.
引用
收藏
相关论文
共 50 条
[21]   Global Existence, Exponential Decay and Blow-up in Finite Time for a Class of Finitely Degenerate Semilinear Parabolic Equations [J].
Hua Chen ;
Huiyang Xu .
Acta Mathematica Scientia, 2019, 39 :1290-1308
[22]   Global existence and blow-up phenomena for a nonlinear wave equation [J].
Hao, Jianghao ;
Zhang, Yajing ;
Li, Shengjia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4823-4832
[23]   Blow-up and global existence for a kinetic equation of swarm formation [J].
Lachowicz, Miroslaw ;
Leszczynski, Henryk ;
Parisot, Martin .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (06) :1153-1175
[24]   Global Existence and Blow-up in Finite Time for a Class of Finitely Degenerate Semilinear Pseudo-parabolic Equations [J].
Hua CHEN ;
Hui Yang XU .
Acta Mathematica Sinica,English Series, 2019, (07) :1143-1162
[25]   Global Existence and Blow-up in Finite Time for a Class of Finitely Degenerate Semilinear Pseudo-parabolic Equations [J].
Chen, Hua ;
Xu, Hui Yang .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (07) :1143-1162
[26]   GLOBAL EXISTENCE,EXPONENTIAL DECAY AND BLOW-UP IN FINITE TIME FOR A CLASS OF FINITELY DEGENERATE SEMILINEAR PARABOLIC EQUATIONS [J].
陈化 ;
徐辉阳 .
ActaMathematicaScientia, 2019, 39 (05) :1290-1308
[27]   GLOBAL EXISTENCE, EXPONENTIAL DECAY AND BLOW-UP IN FINITE TIME FOR A CLASS OF FINITELY DEGENERATE SEMILINEAR PARABOLIC EQUATIONS [J].
Chen, Hua ;
Xu, Huiyang .
ACTA MATHEMATICA SCIENTIA, 2019, 39 (05) :1290-1308
[28]   Global Existence and Blow-up in Finite Time for a Class of Finitely Degenerate Semilinear Pseudo-parabolic Equations [J].
Hua Chen ;
Hui Yang Xu .
Acta Mathematica Sinica, English Series, 2019, 35 :1143-1162
[29]   Blow-up with mass concentration for the long-wave unstable thin-film equation [J].
Chugunova, Marina ;
Taranets, Roman M. .
APPLICABLE ANALYSIS, 2016, 95 (05) :944-962
[30]   THE BLOW-UP AND GLOBAL EXISTENCE OF SOLUTIONS OF CAUCHY PROBLEMS FOR A TIME FRACTIONAL DIFFUSION EQUATION [J].
Zhang, Quan-Guo ;
Sun, Hong-Rui .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 46 (01) :69-92