Global existence and finite time blow-up for a class of thin-film equation
被引:0
|
作者:
Zhihua Dong
论文数: 0引用数: 0
h-index: 0
机构:Southwest University,School of Mathematics and Statistics
Zhihua Dong
论文数: 引用数:
h-index:
机构:
Jun Zhou
机构:
[1] Southwest University,School of Mathematics and Statistics
来源:
Zeitschrift für angewandte Mathematik und Physik
|
2017年
/
68卷
关键词:
Thin-film equation;
Potential wells;
Global existence;
Blow-up;
35B40;
35K58;
35K35;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
This paper deals with a class of thin-film equation, which was considered in Li et al. (Nonlinear Anal Theory Methods Appl 147:96–109, 2016), where the case of lower initial energy (J(u0)≤d\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$J(u_0)\le d$$\end{document} and d is a positive constant) was discussed, and the conditions on global existence or blow-up are given. We extend the results of this paper on two aspects: Firstly, we consider the upper and lower bounds of blow-up time and asymptotic behavior when J(u0)<d\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$J(u_0)<d$$\end{document}; secondly, we study the conditions on global existence or blow-up when J(u0)>d\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$J(u_0)>d$$\end{document}.
机构:
Qufu Normal Univ, Sch Math Sci, Qufu, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Qufu, Peoples R China
Sun, Fenglong
Liu, Lishan
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Math Sci, Qufu, Peoples R China
Curtin Univ, Dept Math & Stat, Perth, WA, AustraliaQufu Normal Univ, Sch Math Sci, Qufu, Peoples R China
Liu, Lishan
Wu, Yonghong
论文数: 0引用数: 0
h-index: 0
机构:
Curtin Univ, Dept Math & Stat, Perth, WA, AustraliaQufu Normal Univ, Sch Math Sci, Qufu, Peoples R China