Global existence and finite time blow-up for a class of thin-film equation

被引:0
作者
Zhihua Dong
Jun Zhou
机构
[1] Southwest University,School of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2017年 / 68卷
关键词
Thin-film equation; Potential wells; Global existence; Blow-up; 35B40; 35K58; 35K35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a class of thin-film equation, which was considered in Li et al. (Nonlinear Anal Theory Methods Appl 147:96–109, 2016), where the case of lower initial energy (J(u0)≤d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)\le d$$\end{document} and d is a positive constant) was discussed, and the conditions on global existence or blow-up are given. We extend the results of this paper on two aspects: Firstly, we consider the upper and lower bounds of blow-up time and asymptotic behavior when J(u0)<d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)<d$$\end{document}; secondly, we study the conditions on global existence or blow-up when J(u0)>d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)>d$$\end{document}.
引用
收藏
相关论文
共 50 条
[11]   BLOW-UP AND GLOBAL EXISTENCE OF SOLUTIONS FOR A TIME FRACTIONAL DIFFUSION EQUATION [J].
Li, Yaning ;
Zhang, Quanguo .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (06) :1619-1640
[12]   Blow-up and global existence of solutions for a time fractional diffusion equation [J].
Yaning Li ;
Quanguo Zhang .
Fractional Calculus and Applied Analysis, 2018, 21 :1619-1640
[13]   On the global existence and finite time blow-up of shadow systems [J].
Li, Fang ;
Ni, Wei-Ming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (06) :1762-1776
[14]   Global existence and blow-up of solutions to a class of nonlocal parabolic equations [J].
Xu, Guangyu ;
Zhou, Jun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (03) :979-996
[15]   Finite time blow-up and global existence for the nonlocal complex Ginzburg-Landau equation [J].
Li, Xiaoliang ;
Liu, Baiyu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) :961-985
[16]   Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations [J].
Xu, Runzhang ;
Su, Jia .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (12) :2732-2763
[17]   Global Existence, Finite Time Blow-up and Vacuum Isolating Phenomena for Semilinear Parabolic Equation with Conical Degeneration [J].
Xu, Guangyu .
TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (06) :1479-1508
[18]   Global existence and finite time blow-up of solutions for the semilinear pseudo-parabolic equation with a memory term [J].
Sun, Fenglong ;
Liu, Lishan ;
Wu, Yonghong .
APPLICABLE ANALYSIS, 2019, 98 (04) :735-755
[19]   Global existence and blow-up for a weakly dissipative μDP equation [J].
Kohlmann, Martin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (14) :4746-4753
[20]   GLOBAL EXISTENCE, EXPONENTIAL DECAY AND FINITE TIME BLOW-UP FOR A CLASS OF FINITELY DEGENERATE COUPLED PARABOLIC SYSTEMS [J].
Chen, Hua ;
Wang, Jing ;
Xu, Huiyang .
METHODS AND APPLICATIONS OF ANALYSIS, 2021, 28 (02) :173-194