Global existence and finite time blow-up for a class of thin-film equation

被引:0
作者
Zhihua Dong
Jun Zhou
机构
[1] Southwest University,School of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2017年 / 68卷
关键词
Thin-film equation; Potential wells; Global existence; Blow-up; 35B40; 35K58; 35K35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a class of thin-film equation, which was considered in Li et al. (Nonlinear Anal Theory Methods Appl 147:96–109, 2016), where the case of lower initial energy (J(u0)≤d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)\le d$$\end{document} and d is a positive constant) was discussed, and the conditions on global existence or blow-up are given. We extend the results of this paper on two aspects: Firstly, we consider the upper and lower bounds of blow-up time and asymptotic behavior when J(u0)<d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)<d$$\end{document}; secondly, we study the conditions on global existence or blow-up when J(u0)>d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)>d$$\end{document}.
引用
收藏
相关论文
共 50 条
[1]   Global existence and finite time blow-up for a class of thin-film equation [J].
Dong, Zhihua ;
Zhou, Jun .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (04)
[2]   Global Existence, Finite Time Blow-Up, and Vacuum Isolating Phenomenon for a Class of Thin-Film Equation [J].
Xu, Guangyu ;
Zhou, Jun ;
Mu, Chunlai .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (02) :265-288
[3]   Global Existence, Finite Time Blow-Up, and Vacuum Isolating Phenomenon for a Class of Thin-Film Equation [J].
Guangyu Xu ;
Jun Zhou ;
Chunlai Mu .
Journal of Dynamical and Control Systems, 2020, 26 :265-288
[4]   Global existence blow up and extinction for a class of thin-film equation [J].
Li, Qingwei ;
Gao, Wenjie ;
Han, Yuzhu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 147 :96-109
[5]   Global existence and finite time blow-up of the solution for a thin-film equation with high initial energy [J].
Xu, Guangyu ;
Zhou, Jun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) :521-535
[6]   Finite time blow-up for a thin-film equation with initial data at arbitrary energy level [J].
Sun, Fenglong ;
Liu, Lishan ;
Wu, Yonghong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) :9-20
[7]   Global existence and blow-up to a class of degenerate parabolic equation with time dependent coefficients [J].
Xia, Anyin ;
Pu, Xianxiang ;
Li, Shan .
PROCEEDINGS OF THE 2015 4TH NATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING ( NCEECE 2015), 2016, 47 :1592-1595
[8]   Blow-up for a thin-film equation with positive initial energy [J].
Zhou, Jun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (01) :1133-1138
[9]   Global Existence and Finite Time Blow-up of Solutions to a Nonlocal p-Laplace Equation [J].
Li, Jian ;
Han, Yuzhu .
MATHEMATICAL MODELLING AND ANALYSIS, 2019, 24 (02) :195-217
[10]   Global asymptotical behavior and some new blow-up conditions of solutions to a thin-film equation [J].
Zhou, Jun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (02) :1290-1312