Hausdorff dimensions of perturbations of a conformal iterated function system via thermodynamic formalism

被引:0
作者
Tushar Das
Lior Fishman
David Simmons
Mariusz Urbański
机构
[1] University of Wisconsin-La Crosse,Department of Mathematics & Statistics
[2] University of North Texas,Department of Mathematics
[3] University of York,Department of Mathematics
来源
Selecta Mathematica | 2023年 / 29卷
关键词
Thermodynamic formalism; Transfer operator; Hausdorff dimension; Iterated function system; IFS; Conformal map; Gauss map; Continued fractions; Dynamical systems; Fractal geometry; Functional analysis; Perturbation theory; Spectral theory; Primary 37C45; 11K50; 37D35; 37C30; Secondary 11K60; 28A78; 37F35; 28A80; 37B10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider small perturbations of a conformal iterated function system produced by either adding or removing some generators with small derivative from the original. We establish a formula, utilizing transfer operators arising from the thermodynamic formalism à la Sinai–Ruelle–Bowen, which may be solved to express the Hausdorff dimension of the perturbed limit set in series form: either exactly, or as an asymptotic expansion. Significant applications to the dimension theory of continued fraction Cantor sets include strengthening Hensley’s asymptotic formula from 1992, which improved on earlier bounds due to Jarník and Kurzweil, for the Hausdorff dimension of the set of real numbers whose continued fraction expansion partial quotients are all ≤N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le N$$\end{document}; as well as its counterpart for reals whose partial quotients are all ≥N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge N$$\end{document} due to Good from 1941.
引用
收藏
相关论文
共 79 条
  • [31] Kristensen S(2010)Cantor sets determined by partial quotients of continued fractions of Laurent series Ark. Mat. 48 335-545
  • [32] Falk RS(2002)Fractals and self-similarity Amer. J. Math. 124 495-115
  • [33] Nussbaum RD(2018)The arithmetic-geometric scaling spectrum for continued fractions Adv. Math. 325 87-132
  • [34] Fishman L(2007)Calculating Hausdorff dimensions of Julia sets and Kleinian limit sets Bull. Amer. Math. Soc. (N.S.) 44 87-930
  • [35] Simmons D(2002)Rigorous effective bounds on the Hausdorff dimension of continued fraction Cantor sets: a hundred decimal digits for the dimension of Handbook of dynamical systems 1A 813-228
  • [36] Urbański M(2013)Symbolic dynamics for the modular surface and beyond Bull. Amer. Math. Soc. (N.S.) 50 187-2243
  • [37] Flajolet P(2012)Dynamics of subgroup actions on homogeneous spaces of Lie groups and applications to number theory Nonlinearity 25 2207-538
  • [38] Vallée B(1940)From Apollonius to Zaremba: local-global phenomena in thin orbits Amer. Math. Monthly 47 533-5025
  • [39] Gardner RJ(1999)Natural extensions and entropy of Trans. Amer. Math. Soc. 351 4995-333
  • [40] Mauldin RD(1990)-continued fractions Comm. Math. Phys. 130 311-563