Hausdorff dimensions of perturbations of a conformal iterated function system via thermodynamic formalism

被引:0
作者
Tushar Das
Lior Fishman
David Simmons
Mariusz Urbański
机构
[1] University of Wisconsin-La Crosse,Department of Mathematics & Statistics
[2] University of North Texas,Department of Mathematics
[3] University of York,Department of Mathematics
来源
Selecta Mathematica | 2023年 / 29卷
关键词
Thermodynamic formalism; Transfer operator; Hausdorff dimension; Iterated function system; IFS; Conformal map; Gauss map; Continued fractions; Dynamical systems; Fractal geometry; Functional analysis; Perturbation theory; Spectral theory; Primary 37C45; 11K50; 37D35; 37C30; Secondary 11K60; 28A78; 37F35; 28A80; 37B10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider small perturbations of a conformal iterated function system produced by either adding or removing some generators with small derivative from the original. We establish a formula, utilizing transfer operators arising from the thermodynamic formalism à la Sinai–Ruelle–Bowen, which may be solved to express the Hausdorff dimension of the perturbed limit set in series form: either exactly, or as an asymptotic expansion. Significant applications to the dimension theory of continued fraction Cantor sets include strengthening Hensley’s asymptotic formula from 1992, which improved on earlier bounds due to Jarník and Kurzweil, for the Hausdorff dimension of the set of real numbers whose continued fraction expansion partial quotients are all ≤N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le N$$\end{document}; as well as its counterpart for reals whose partial quotients are all ≥N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge N$$\end{document} due to Good from 1941.
引用
收藏
相关论文
共 79 条
  • [1] Apostol TM(1999)An elementary view of Euler’s summation formula Amer. Math. Monthly 106 409-418
  • [2] Arnoux P(2019)Natural extensions and Gauss measures for piecewise homographic continued fractions Bull. Soc. Math. France 147 515-544
  • [3] Schmidt TA(1996)A conversation with I J. Good. Statistical Science 11 1-19
  • [4] Banks DL(2015)Badly approximable points on manifolds Invent. Math. 202 1199-1240
  • [5] Beresnevich V(2011)Multidimensional Euclidean algorithms, numeration and substitutions, Integers 11B Paper No. A2 34-284
  • [6] Berthé V(2000)On continued fraction expansions in positive characteristic: equivalence relations and some metric properties Expo. Math. 18 257-1234
  • [7] Berthé V(2018)Coding of geodesics on some modular surfaces and applications to odd and even continued fractions Indag. Math. (N.S.) 29 1214-206
  • [8] Nakada H(1982)Hausdorff dimensions of Cantor sets J. Reine Angew. Math. 331 192-1269
  • [9] Boca FP(2012)A canonical thickening of Ergodic Theory Dynam. Systems 32 1249-218
  • [10] Merriman C(2011) and the entropy of Ramanujan J. 24 183-1042