A General Approach for the Exact Solution of the Schrödinger Equation

被引:0
|
作者
Cevdet Tezcan
Ramazan Sever
机构
[1] Başkent University,Faculty of Engineering
[2] Middle East Technical University,Department of Physics
关键词
Generalized Morse potential; Rosen-Morse potential; Pseudoharmonic potential; Mie potential; Woods-Saxon potential; Kratzer-Fues potential; Non-central potential;
D O I
暂无
中图分类号
学科分类号
摘要
The Schrödinger equation is solved exactly for some well known potentials. Solutions are obtained reducing the Schrödinger equation into a second order differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get energy eigenvalues and the corresponding wave functions.
引用
收藏
页码:337 / 350
页数:13
相关论文
共 50 条
  • [21] Exact solutions of the Schrödinger equation for zero energy
    J. Pade
    The European Physical Journal D, 2009, 53 : 41 - 50
  • [22] A new class of exact solutions of the Schrödinger equation
    E. E. Perepelkin
    B. I. Sadovnikov
    N. G. Inozemtseva
    A. A. Tarelkin
    Continuum Mechanics and Thermodynamics, 2019, 31 : 639 - 667
  • [23] Exact Controllability for the Fourth Order Schrdinger Equation
    Chuang ZHENG 1 Zhongcheng ZHOU 21 Laboratory of Mathematics and Complex Systems
    ChineseAnnalsofMathematics(SeriesB), 2012, 33 (03) : 395 - 404
  • [24] Exact controllability for the fourth order Schrödinger equation
    Chuang Zheng
    Zhongcheng Zhou
    Chinese Annals of Mathematics, Series B, 2012, 33 : 395 - 404
  • [25] Exact Solutions of the Schrödinger Equation with Irregular Singularity
    Axel Schulze-Halberg
    International Journal of Theoretical Physics, 2000, 39 : 2305 - 2325
  • [26] Exact solution of three dimensional schrödinger equation with power function superposition potential
    Fu, Meihuan
    Liu, Yongwen
    Shi, Jianxin
    Qian, Pengbo
    PLOS ONE, 2023, 18 (11):
  • [27] On a complex fundamental solution of the Schrödinger equation
    A. G. Chechkin
    A. S. Shamaev
    Doklady Mathematics, 2017, 95 : 122 - 124
  • [28] Pseudospectral methods of solution of the Schrödinger equation
    Joseph Q. W. Lo
    Bernie D. Shizgal
    Journal of Mathematical Chemistry, 2008, 44 : 787 - 801
  • [29] A Fractional Schrödinger Equation and Its Solution
    Sami I. Muslih
    Om P. Agrawal
    Dumitru Baleanu
    International Journal of Theoretical Physics, 2010, 49 : 1746 - 1752
  • [30] Analytic presentation of a solution of the Schrödinger equation
    E. Z. Liverts
    E. G. Drukarev
    R. Krivec
    V. B. Mandelzweig
    Few-Body Systems, 2008, 44 : 367 - 370