Harnack inequality for subelliptic p-Laplacian equations of Schrödinger type

被引:0
作者
Yuxing Guo
Yinsheng Jiang
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
Journal of Inequalities and Applications | / 2013卷
关键词
Harnack inequality; subelliptic ; -Laplacian; potential; control distance;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish the Harnack inequality for weak solutions of nonlinear subelliptic p-Laplacian equations of Schrödinger type
引用
收藏
相关论文
共 50 条
  • [31] HARNACK INEQUALITIES FOR WEIGHTED SUBELLIPTIC P-LAPLACE EQUATIONS CONSTRUCTED BY HOORMANDER VECTOR FIELDS
    Wu, Leyun
    Niu, Pengcheng
    MATHEMATICAL REPORTS, 2017, 19 (03): : 313 - 337
  • [32] Four Solutions for Fractional p-Laplacian Equations with Asymmetric Reactions
    Antonio Iannizzotto
    Roberto Livrea
    Mediterranean Journal of Mathematics, 2021, 18
  • [33] Pointwise A Priori Estimates for Solutions to Some p-Laplacian Equations
    Xiao Qiang Sun
    Ji Guang Bao
    Acta Mathematica Sinica, English Series, 2022, 38 : 2150 - 2162
  • [34] Existence and regularity of positive solutions of elliptic equations of Schrödinger type
    B. J. Jaye
    V. G. Maz’ya
    I. E. Verbitsky
    Journal d'Analyse Mathématique, 2012, 118 : 577 - 621
  • [35] On Existence and Multiplicity of Solutions for Elliptic Equations Involving the p-Laplacian
    Xian Wu
    Jilin Chen
    Nonlinear Differential Equations and Applications NoDEA, 2008, 15 : 745 - 755
  • [36] Large solutions for equations involving the p-Laplacian and singular weights
    Jorge García-Melián
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 594 - 607
  • [37] The Nehari manifold method for discrete fractional p-Laplacian equations
    Xuewei Ju
    Hu Die
    Mingqi Xiang
    Advances in Difference Equations, 2020
  • [38] Harnack-type inequality for fractional elliptic equations with critical exponent
    Huang, Shuibo
    Tian, Qiaoyu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5380 - 5397
  • [39] Faber-Krahn inequality for robin problems involving p-Laplacian
    Qiu-yi Dai
    Yu-xia Fu
    Acta Mathematicae Applicatae Sinica, English Series, 2011, 27 : 13 - 28
  • [40] Besov Estimates for Weak Solutions of the Parabolic p-Laplacian Equations
    Rumeng Ma
    Fengping Yao
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3839 - 3859