Genome-wide Analysis of Large-scale Longitudinal Outcomes using Penalization —GALLOP algorithm

被引:0
|
作者
Karolina Sikorska
Emmanuel Lesaffre
Patrick J. F. Groenen
Fernando Rivadeneira
Paul H. C. Eilers
机构
[1] Netherlands Cancer Institute,Department of Biometrics
[2] Leuven University,Leuven Biostatistics and Statistical Bioinformatics Centre
[3] Erasmus University,Erasmus School of Economics
[4] Erasmus Medical Centre,Department of Internal Medicine
[5] Erasmus Medical Centre,Department of Biostatistics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Genome-wide association studies (GWAS) with longitudinal phenotypes provide opportunities to identify genetic variations associated with changes in human traits over time. Mixed models are used to correct for the correlated nature of longitudinal data. GWA studies are notorious for their computational challenges, which are considerable when mixed models for thousands of individuals are fitted to millions of SNPs. We present a new algorithm that speeds up a genome-wide analysis of longitudinal data by several orders of magnitude. It solves the equivalent penalized least squares problem efficiently, computing variances in an initial step. Factorizations and transformations are used to avoid inversion of large matrices. Because the system of equations is bordered, we can re-use components, which can be precomputed for the mixed model without a SNP. Two SNP effects (main and its interaction with time) are obtained. Our method completes the analysis a thousand times faster than the R package lme4, providing an almost identical solution for the coefficients and p-values. We provide an R implementation of our algorithm.
引用
收藏
相关论文
共 50 条
  • [41] Efficient and accurate frailty model approach for genome-wide survival association analysis in large-scale biobanks
    Dey, Rounak
    Zhou, Wei
    Kiiskinen, Tuomo
    Havulinna, Aki
    Elliott, Amanda
    Karjalainen, Juha
    Kurki, Mitja
    Qin, Ashley
    Lee, Seunggeun
    Palotie, Aarno
    Neale, Benjamin
    Daly, Mark
    Lin, Xihong
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [42] Efficient and accurate framework for genome-wide gene-environment interaction analysis in large-scale biobanks
    Ma, Yuzhuo
    Zhao, Yanlong
    Zhang, Ji-Feng
    Bi, Wenjian
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [43] Large-scale genome-wide pharmacogenetic meta-analysis of blood pressure response to antihypertensive drugs
    Warren, Helen
    Sun, Fangui
    Stewart, James
    Broer, Linda
    Trompet, Stella
    Clarke, Helga
    Sitlani, Colleen
    Noordam, Raymond
    Yao, Jie
    Lange, Leslie
    Ahluwalia, Tarunveer S.
    Psaty, Bruce
    Munroe, Patricia
    JOURNAL OF HUMAN HYPERTENSION, 2017, 31 (10) : 659 - 659
  • [44] Large-scale genome-wide scans do not support petaloid toenail as a Mendelian trait
    Zhang, Manfei
    Wu, Sijie
    Zhang, Juan
    Yang, Yajun
    Tan, Jingze
    Guan, Haijuan
    Liu, Yu
    Tang, Kun
    Krutmann, Jean
    Xu, Shuhua
    Jin, Li
    Guan, Yaqun
    Li, Hui
    Wang, Sijia
    JOURNAL OF GENETICS AND GENOMICS, 2016, 43 (12) : 702 - 704
  • [45] Large-scale genome-wide scans do not support petaloid toenail as a Mendelian trait
    Manfei Zhang
    Sijie Wu
    Juan Zhang
    Yajun Yang
    Jingze Tan
    Haijuan Guan
    Yu Liu
    Kun Tang
    Jean Krutmann
    Shuhua Xu
    Li Jin
    Yaqun Guan
    Hui Li
    Sijia Wang
    JournalofGeneticsandGenomics, 2016, 43 (12) : 702 - 704
  • [46] Large-scale genome-wide study reveals climate adaptive variability in a cosmopolitan pest
    Yanting Chen
    Zhaoxia Liu
    Jacques Régnière
    Liette Vasseur
    Jian Lin
    Shiguo Huang
    Fushi Ke
    Shaoping Chen
    Jianyu Li
    Jieling Huang
    Geoff M. Gurr
    Minsheng You
    Shijun You
    Nature Communications, 12
  • [47] A large-scale zebrafish gene knockout resource for the genome-wide study of gene function
    Varshney, Gaurav K.
    Lu, Jing
    Gildea, Derek E.
    Huang, Haigen
    Pei, Wuhong
    Yang, Zhongan
    Huang, Sunny C.
    Schoenfeld, David
    Pho, Nam H.
    Casero, David
    Hirase, Takashi
    Mosbrook-Davis, Deborah
    Zhang, Suiyuan
    Jao, Li-En
    Zhang, Bo
    Woods, Ian G.
    Zimmerman, Steven
    Schier, Alexander F.
    Wolfsberg, Tyra G.
    Pellegrini, Matteo
    Burgess, Shawn M.
    Lin, Shuo
    GENOME RESEARCH, 2013, 23 (04) : 727 - 735
  • [48] Large-scale genome-wide study reveals climate adaptive variability in a cosmopolitan pest
    Chen, Yanting
    Liu, Zhaoxia
    Regniere, Jacques
    Vasseur, Liette
    Lin, Jian
    Huang, Shiguo
    Ke, Fushi
    Chen, Shaoping
    Li, Jianyu
    Huang, Jieling
    Gurr, Geoff M.
    You, Minsheng
    You, Shijun
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [49] Genome-wide pyrosequencing analysis of a Citrus tristeza virus (CTV) complex revealed large-scale recombination throughout the viral genome
    Xiong, Z.
    Weng, Z.
    Yu, Y.
    Gowda, S.
    Liu, X.
    Galbraith, D. W.
    Wing, R. A.
    Dawson, W. O.
    PHYTOPATHOLOGY, 2008, 98 (06) : S174 - S174
  • [50] Genome-wide association study of individual differences of human lymphocyte profiles using large-scale cytometry data
    Daigo Okada
    Naotoshi Nakamura
    Kazuya Setoh
    Takahisa Kawaguchi
    Koichiro Higasa
    Yasuharu Tabara
    Fumihiko Matsuda
    Ryo Yamada
    Journal of Human Genetics, 2021, 66 : 557 - 567