Genome-wide Analysis of Large-scale Longitudinal Outcomes using Penalization —GALLOP algorithm

被引:0
|
作者
Karolina Sikorska
Emmanuel Lesaffre
Patrick J. F. Groenen
Fernando Rivadeneira
Paul H. C. Eilers
机构
[1] Netherlands Cancer Institute,Department of Biometrics
[2] Leuven University,Leuven Biostatistics and Statistical Bioinformatics Centre
[3] Erasmus University,Erasmus School of Economics
[4] Erasmus Medical Centre,Department of Internal Medicine
[5] Erasmus Medical Centre,Department of Biostatistics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Genome-wide association studies (GWAS) with longitudinal phenotypes provide opportunities to identify genetic variations associated with changes in human traits over time. Mixed models are used to correct for the correlated nature of longitudinal data. GWA studies are notorious for their computational challenges, which are considerable when mixed models for thousands of individuals are fitted to millions of SNPs. We present a new algorithm that speeds up a genome-wide analysis of longitudinal data by several orders of magnitude. It solves the equivalent penalized least squares problem efficiently, computing variances in an initial step. Factorizations and transformations are used to avoid inversion of large matrices. Because the system of equations is bordered, we can re-use components, which can be precomputed for the mixed model without a SNP. Two SNP effects (main and its interaction with time) are obtained. Our method completes the analysis a thousand times faster than the R package lme4, providing an almost identical solution for the coefficients and p-values. We provide an R implementation of our algorithm.
引用
收藏
相关论文
共 50 条
  • [21] Large-scale cross-ancestry genome-wide meta-analysis of serum urate
    Cho, Chamlee
    Kim, Beomsu
    Kim, Dan Say
    Hwang, Mi Yeong
    Shim, Injeong
    Song, Minku
    Lee, Yeong Chan
    Jung, Sang-Hyuk
    Cho, Sung Kweon
    Park, Woong-Yang
    Myung, Woojae
    Kim, Bong-Jo
    Do, Ron
    Choi, Hyon K.
    Merriman, Tony R.
    Kim, Young Jin
    Won, Hong-Hee
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [22] In-depth analysis of large-scale screening of WRKY members based on genome-wide identification
    Pan, Haoyu
    Chen, Yu
    Zhao, Jingyi
    Huang, Jie
    Shu, Nana
    Deng, Hui
    Song, Cheng
    FRONTIERS IN GENETICS, 2023, 13
  • [23] Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function
    Wild, Philipp S.
    Felix, Janine F.
    Schillert, Arne
    Teumer, Alexander
    Chen, Ming-Huei
    Leening, Maarten J. G.
    Voelker, Uwe
    Grossmann, Vera
    Brody, Jennifer A.
    Irvin, Marguerite R.
    Shah, Sanjiv J.
    Pramana, Setia
    Lieb, Wolfgang
    Schmidt, Reinhold
    Stanton, Alice V.
    Malzahn, Doerthe
    Smith, Albert Vernon
    Sundstrom, Johan
    Minelli, Cosetta
    Ruggiero, Daniela
    Lyytikainen, Leo-Pekka
    Tiller, Daniel
    Smith, J. Gustav
    Monnereau, Claire
    Di Tullio, Marco R.
    Musani, Solomon K.
    Morrison, Alanna C.
    Pers, Tune H.
    Morley, Michael
    Kleber, Marcus E.
    Aragam, Jayashri
    Benjamin, Emelia J.
    Bis, Joshua C.
    Bisping, Egbert
    Broeckel, Ulrich
    Cheng, Susan
    Deckers, Jaap W.
    Del Greco, Fabiola
    Edelmann, Frank
    Fornage, Myriam
    Franke, Lude
    Friedrich, Nele
    Harris, Tamara B.
    Hofer, Edith
    Hofman, Albert
    Huang, Jie
    Hughes, Alun D.
    Kahonen, Mika
    Kruppa, Jochen
    Lackner, Karl J.
    JOURNAL OF CLINICAL INVESTIGATION, 2017, 127 (05): : 1798 - 1812
  • [24] Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr
    Prive, Florian
    Aschard, Hugues
    Ziyatdinov, Andrey
    Blum, Michael G. B.
    BIOINFORMATICS, 2018, 34 (16) : 2781 - 2787
  • [25] Research Guidelines in the Era of Large-scale Collaborations: An Analysis of Genome-wide Association Study Consortia
    Austin, Melissa A.
    Hair, Marilyn S.
    Fullerton, Stephanie M.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2012, 175 (09) : 962 - 969
  • [26] A Large-Scale Genome-Wide Linkage Analysis to Map Loci Linked to Stature in Chinese Population
    Hong, Xiumei
    Tsai, Hui-Ju
    Liu, Xin
    Li, Zhiping
    Liu, Xue
    Tang, Genfu
    Xing, Houxun
    Yang, Jianhua
    Wang, Binyan
    Feng, Yan
    Xu, Xin
    Xu, Xiping
    Wang, Xiaobin
    JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2008, 93 (11): : 4511 - 4518
  • [27] A large-scale genome-wide association study meta-analysis of cannabis use disorder
    Johnson, Emma C.
    Demontis, Ditte
    Thorgeirsson, Thorgeir E.
    Walters, Raymond K.
    Polimanti, Renato
    Hatoum, Alexander S.
    Sanchez-Roige, Sandra
    Paul, Sarah E.
    Wendt, Frank R.
    Clarke, Toni-Kim
    Lai, Dongbing
    Reginsson, Gunnar W.
    Zhou, Hang
    He, June
    Baranger, David A. A.
    Gudbjartsson, Daniel F.
    Wedow, Robbee
    Adkins, Daniel E.
    Adkins, Amy E.
    Alexander, Jeffry
    Bacanu, Silviu-Alin
    Bigdeli, Tim B.
    Boden, Joseph
    Brown, Sandra A.
    Bucholz, Kathleen K.
    Bybjerg-Grauholm, Jonas
    Corley, Robin P.
    Degenhardt, Louisa
    Dick, Danielle M.
    Domingue, Benjamin W.
    Fox, Louis
    Goate, Alison M.
    Gordon, Scott D.
    Hack, Laura M.
    Hancock, Dana B.
    Hartz, Sarah M.
    Hickie, Ian B.
    Hougaard, David M.
    Krauter, Kenneth
    Lind, Penelope A.
    McClintick, Jeanette N.
    McQueen, Matthew B.
    Meyers, Jacquelyn L.
    Montgomery, Grant W.
    Mors, Ole
    Mortensen, Preben B.
    Nordentoft, Merete
    Pearson, John F.
    Peterson, Roseann E.
    Reynolds, Maureen D.
    LANCET PSYCHIATRY, 2020, 7 (12): : 1032 - 1045
  • [28] A shared genetic contribution to osteoarthritis and COVID-19 outcomes: a large-scale genome-wide cross-trait analysis
    Huang, Yi-Xuan
    Tian, Tian
    Huang, Ji-Xiang
    Wang, Jing
    Sui, Cong
    Ni, Jing
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [29] Large-Scale Genome-Wide Association Studies Consortia Blessing, Burden, or Necessity?
    Ingelsson, Erik
    CIRCULATION-CARDIOVASCULAR GENETICS, 2010, 3 (05) : 396 - 398
  • [30] Evaluating the dopamine hypothesis of schizophrenia in a large-scale genome-wide association study
    Edwards, Alexis C.
    Bacanu, Silviu-Alin
    Bigdeli, Tim B.
    Moscati, Arden
    Kendler, Kenneth S.
    SCHIZOPHRENIA RESEARCH, 2016, 176 (2-3) : 136 - 140