Deep learning is combined with massive-scale citizen science to improve large-scale image classification

被引:117
作者
Sullivan, Devin P. [1 ]
Winsnes, Casper F. [1 ]
Akesson, Lovisa [1 ]
Hjelmare, Martin [1 ]
Wiking, Mikaela [1 ]
Schutten, Rutger [1 ]
Campbell, Linzi [2 ]
Leifsson, Hjalti [2 ]
Rhodes, Scott [2 ]
Nordgren, Andie [2 ]
Smith, Kevin [3 ]
Revaz, Bernard [4 ]
Finnbogason, Bergur [2 ]
Szantner, Attila [4 ]
Lundberg, Emma [1 ,5 ,6 ]
机构
[1] KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Sci Life Lab, Stockholm, Sweden
[2] CCP Hf, Reyjkavik, Iceland
[3] KTH Royal Inst Technol, Sch Comp Sci & Commun, Sci Life Lab, Stockholm, Sweden
[4] MMOS Sarl, Monthey, Switzerland
[5] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[6] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
关键词
SUBCELLULAR LOCATION; AUTOMATED-ANALYSIS; MICROSCOPE IMAGES; PROTEIN; GAME; VOLUNTEERS; ALGORITHM;
D O I
10.1038/nbt.4225
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Pattern recognition and classification of images are key challenges throughout the life sciences. We combined two approaches for large-scale classification of fluorescence microscopy images. First, using the publicly available data set from the Cell Atlas of the Human Protein Atlas (HPA), we integrated an image-classification task into a mainstream video game (EVE Online) as a mini-game, named Project Discovery. Participation by 322,006 gamers over 1 year provided nearly 33 million classifications of subcellular localization patterns, including patterns that were not previously annotated by the HPA. Second, we used deep learning to build an automated Localization Cellular Annotation Tool (Loc-CAT). This tool classifies proteins into 29 subcellular localization patterns and can deal efficiently with multi-localization proteins, performing robustly across different cell types. Combining the annotations of gamers and deep learning, we applied transfer learning to create a boosted learner that can characterize subcellular protein distribution with F1 score of 0.72. We found that engaging players of commercial computer games provided data that augmented deep learning and enabled scalable and readily improved image classification.
引用
收藏
页码:820 / +
页数:13
相关论文
共 39 条
[1]   A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells [J].
Boland, MV ;
Murphy, RF .
BIOINFORMATICS, 2001, 17 (12) :1213-1223
[2]  
Bouwer J., 2011, MICROSC MICROANAL, V17, P276
[3]   Glutamine deprivation initiates reversible assembly of mammalian rods and rings [J].
Calise, S. John ;
Carcamo, Wendy C. ;
Krueger, Claire ;
Yin, Joyce D. ;
Purich, Daniel L. ;
Chan, Edward K. L. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2014, 71 (15) :2963-2973
[4]   Induction of Cytoplasmic Rods and Rings Structures by Inhibition of the CTP and GTP Synthetic Pathway in Mammalian Cells [J].
Carcamo, Wendy C. ;
Satoh, Minoru ;
Kasahara, Hideko ;
Terada, Naohiro ;
Hamazaki, Takashi ;
Chan, Jason Y. F. ;
Yao, Bing ;
Tamayo, Stephanie ;
Covini, Giovanni ;
von Muehlen, Carlos A. ;
Chan, Edward K. L. .
PLOS ONE, 2011, 6 (12)
[5]   A multiresolution approach to automated classification of protein subcellular location images [J].
Chebira, Amina ;
Barbotin, Yann ;
Jackson, Charles ;
Merryman, Thomas ;
Srinivasa, Gowri ;
Murphy, Robert F. ;
Kovacevic, Jelena .
BMC BIOINFORMATICS, 2007, 8 (1)
[6]   Galaxy Zoo Volunteers Share Pain and Glory of Research [J].
Clery, Daniel .
SCIENCE, 2011, 333 (6039) :173-175
[7]   Determining the subcellular location of new proteins from microscope images using local features [J].
Coelho, Luis Pedro ;
Kangas, Joshua D. ;
Naik, Armaghan W. ;
Osuna-Highley, Elvira ;
Glory-Afshar, Estelle ;
Fuhrman, Margaret ;
Simha, Ramanuja ;
Berget, Peter B. ;
Jarvik, Jonathan W. ;
Murphy, Robert F. .
BIOINFORMATICS, 2013, 29 (18) :2343-2349
[8]   Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing [J].
Coelho, Luis Pedro ;
Peng, Tao ;
Murphy, Robert F. .
BIOINFORMATICS, 2010, 26 (12) :i7-i12
[9]   Citizen science: Can volunteers do real research? [J].
Cohn, Jeffrey P. .
BIOSCIENCE, 2008, 58 (03) :192-197
[10]   Defining and Measuring Success in Online Citizen Science: A Case Study of Zooniverse Projects [J].
Cox, Joe ;
Oh, Eun Young ;
Simmons, Brooke ;
Lintott, Chris ;
Masters, Karen ;
Greenhill, Anita ;
Graham, Gary ;
Holmes, Kate .
COMPUTING IN SCIENCE & ENGINEERING, 2015, 17 (04) :28-41