Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials

被引:0
作者
K. M. Daily
Alejandro Kievsky
Chris H. Greene
机构
[1] Purdue University,Department of Physics and Astronomy
[2] Instituto Nazionale di Fisica Nucleare,undefined
来源
Few-Body Systems | 2015年 / 56卷
关键词
Nuclear Potential; Discrete Variable Representation; Triton Binding Energy; AV14 Potential; Laguerre Basis;
D O I
暂无
中图分类号
学科分类号
摘要
Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.
引用
收藏
页码:753 / 759
页数:6
相关论文
共 27 条
[1]  
Macek J.(1968)Properties of autoionizing states of He J. Phys. B: At. Mol. Opt. 1 831-undefined
[2]  
Lin C.D.(1974)Correlations of excited electrons. The study of channels in hyperspherical coordinates Phys. Rev. A 10 1986-undefined
[3]  
Garrido E.(2012)Integral relations and the adiabatic expansion method for 1 + 2 reactions above the breakup threshold: helium trimers with soft-core potentials Phys. Rev. A 86 052709-undefined
[4]  
Romero-Redondo C.(2014)Breakup of three particles within the adiabatic expansion method Phys. Rev. C 90 014607-undefined
[5]  
Kievsky A.(1984)Nucleon-nucleon potentials with and without Δ(1232) degrees of freedom Phys. Rev. C 29 1207-undefined
[6]  
Viviani M.(1995)Accurate nucleon-nucleon potential with charge-independence breaking Phys. Rev. C 51 38-undefined
[7]  
Garrido E.(1997)High-precision calculation of the triton ground state within the hyperspherical-harmonics method Few-Body Syst. 22 1-undefined
[8]  
Kievsky A.(1985)Generalized discrete variable approximation in quantum mechanics J. Chem. Phys. 82 1400-undefined
[9]  
Viviani M.(2000)Numerical grid methods for quantum-mechanical scattering problems Phys. Rev. A 62 032706-undefined
[10]  
Wiringa R.B.(1996)‘Slow’ variable discretization: a novel approach for hamiltonians allowing adiabatic separation of variables J. Phys. B: At., Mol. Opt. 29 L389-undefined