KASP: a high-throughput genotyping system and its applications in major crop plants for biotic and abiotic stress tolerance

被引:15
作者
Dipta, Bhawna [1 ]
Sood, Salej [1 ]
Mangal, Vikas [1 ]
Bhardwaj, Vinay [2 ]
Thakur, Ajay Kumar [1 ]
Kumar, Vinod [1 ]
Singh, Brajesh [1 ]
机构
[1] ICAR Cent Potato Res Inst, Shimla 171001, Himachal Prades, India
[2] ICAR Natl Res Ctr Seed Spices, Ajmer 305206, Rajasthan, India
关键词
Disease resistance; Drought tolerance; Fluorophore; Genotyping; Kompetitive Allele specific PCR (KASP); MOLECULAR MARKERS; STRIPE RUST; RESISTANCE; GENE; WHEAT; VALIDATION; IDENTIFICATION; QTL; LOCUS;
D O I
10.1007/s11033-024-09455-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Advances in plant molecular breeding have resulted in the development of new varieties with superior traits, thus improving the crop germplasm. Breeders can screen a large number of accessions without rigorous and time-consuming phenotyping by marker-assisted selection (MAS). Molecular markers are one of the most imperative tools in plant breeding programmes for MAS to develop new cultivars possessing multiple superior traits. Single nucleotide polymorphisms (SNPs) are ideal for MAS due to their low cost, low genotyping error rates, and reproducibility. Kompetitive Allele Specific PCR (KASP) is a globally recognized technology for SNP genotyping. KASP is an allele-specific oligo extension-based PCR assay that uses fluorescence resonance energy transfer (FRET) to detect genetic variations such as SNPs and insertions/deletions (InDels) at a specific locus. Additionally, KASP allows greater flexibility in assay design, which leads to a higher success rate and the capability to genotype a large population. Its versatility and ease of use make it a valuable tool in various fields, including genetics, agriculture, and medical research. KASP has been extensively used in various plant-breeding applications, such as the identification of germplasm resources, quality control (QC) analysis, allele mining, linkage mapping, quantitative trait locus (QTL) mapping, genetic map construction, trait-specific marker development, and MAS. This review provides an overview of the KASP assay and emphasizes its validation in crop improvement related to various biotic and abiotic stress tolerance and quality traits.
引用
收藏
页数:16
相关论文
共 94 条
[1]   Characterization of Haplotype Diversity in the BADH2 Aroma Gene and Development of a KASP SNP Assay for Predicting Aroma in US Rice [J].
Addison, Christopher K. ;
Angira, Brijesh ;
Kongchum, Manoch ;
Harrell, Dustin L. ;
Baisakh, Niranjan ;
Linscombe, Steven D. ;
Famoso, Adam N. .
RICE, 2020, 13 (01)
[2]   Introgression of Maize Lethal Necrosis Resistance Quantitative Trait Loci Into Susceptible Maize Populations and Validation of the Resistance Under Field Conditions in Naivasha, Kenya [J].
Awata, Luka A. O. ;
Ifie, Beatrice E. ;
Danquah, Eric ;
Jumbo, MacDonald Bright ;
Suresh, L. Mahabaleswara ;
Gowda, Manje ;
Marchelo-Dragga, Philip W. ;
Olsen, Michael Scott ;
Shorinola, Oluwaseyi ;
Yao, Nasser Kouadio ;
Boddupalli, Prasanna M. ;
Tongoona, Pangirayi B. .
FRONTIERS IN PLANT SCIENCE, 2021, 12
[3]   Comparison of TaqMan, KASP and rhAmp SNP genotyping platforms in hexaploid wheat [J].
Ayalew, Habtamu ;
Tsang, Pak Wah ;
Chu, Chenggen ;
Wang, Junzhou ;
Liu, Shuyu ;
Chen, Caifu ;
Ma, Xue-Feng .
PLOS ONE, 2019, 14 (05)
[4]   Molecular Mapping of Stem Rust Resistance Loci Effective Against the Ug99 Race Group of the Stem Rust Pathogen and Validation of a Single Nucleotide Polymorphism Marker Linked to Stem Rust Resistance Gene Sr28 [J].
Babiker, E. M. ;
Gordon, T. C. ;
Chao, S. ;
Rouse, M. N. ;
Wanyera, R. ;
Acevedo, M. ;
Brown-Guedira, G. ;
Bonman, J. M. .
PHYTOPATHOLOGY, 2017, 107 (02) :208-215
[5]   Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace [J].
Babiker, E. M. ;
Gordon, T. C. ;
Chao, S. ;
Newcomb, M. ;
Rouse, M. N. ;
Jin, Y. ;
Wanyera, R. ;
Acevedo, M. ;
Brown-Guedira, G. ;
Williamson, S. ;
Bonman, J. M. .
THEORETICAL AND APPLIED GENETICS, 2015, 128 (04) :605-612
[6]   Discovery of the New Leaf Rust Resistance Gene Lr82 in Wheat: Molecular Mapping and Marker Development [J].
Bariana, Harbans S. ;
Babu, Prashanth ;
Forrest, Kerrie L. ;
Park, Robert F. ;
Bansal, Urmil K. .
GENES, 2022, 13 (06)
[7]   Identification and validation of a locus for wheat maximum root length independent of parental reproductive environment [J].
Chen, Huangxin ;
Zhao, Conghao ;
Yang, Yaoyao ;
Zeng, Zhaoyong ;
Li, Wei ;
Liu, Yanlin ;
Tang, Huaping ;
Xu, Qiang ;
Deng, Mei ;
Jiang, Qiantao ;
Chen, Guoyue ;
Peng, Yuanying ;
Jiang, Yunfeng ;
Jiang, Yun ;
Wei, Yuming ;
Zheng, Youliang ;
Lan, Xiujin ;
Ma, Jian .
FRONTIERS IN PLANT SCIENCE, 2022, 13
[8]   Identification of qBK2.1, a novel QTL controlling rice resistance against Fusarium fujikuroi [J].
Chen, Szu-Yu ;
Lai, Ming-Hsin ;
Chu, Yi-Ling ;
Wu, Dong-Hong ;
Tung, Chih-Wei ;
Chen, Yue-Jie ;
Chung, Chia-Lin .
BOTANICAL STUDIES, 2023, 64 (01)
[9]   Heat in Wheat: Exploit Reverse Genetic Techniques to Discover New Alleles Within the Triticum durum sHsp26 Family [J].
Comastri, Alessia ;
Janni, Michela ;
Simmonds, James ;
Uauy, Cristobal ;
Pignone, Domenico ;
Nguyen, Henry T. ;
Marmiroli, Nelson .
FRONTIERS IN PLANT SCIENCE, 2018, 9
[10]   Development and validation of a user-friendly KASP marker for the Sw-5 locus in tomato [J].
Devran, Zubeyir ;
Kahveci, E. .
AUSTRALASIAN PLANT PATHOLOGY, 2019, 48 (05) :503-507