On the length of commutators in Chevalley groups

被引:0
作者
Alexei Stepanov
Nikolai Vavilov
机构
[1] Abdus Salam School of Mathematical Sciences at GCU,Department of Mathematics and Mechanics
[2] Sankt-Petersburg Electrotechnical University,undefined
[3] Sankt-Petersburg State University,undefined
来源
Israel Journal of Mathematics | 2011年 / 185卷
关键词
Chevalley Group; Congruence Subgroup; Multiplicative System; Semilocal Ring; Elementary Subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
Let G = G(Φ,R) be the simply connected Chevalley group with root system Φ over a ring R. Denote by E(Φ,R) its elementary subgroup. The main result of the article asserts that the set of commutators C = {[a, b]|a ∈ G(Φ, R), b ∈ E(Φ, R)} has bounded width with respect to elementary generators. More precisely, there exists a constant L depending on Φ and dimension of maximal spectrum of R such that any element from C is a product of at most L elementary root unipotent elements. A similar result for Φ = Al, with a better bound, was earlier obtained by Sivatski and Stepanov.
引用
收藏
页码:253 / 276
页数:23
相关论文
共 68 条
[1]  
Abe E.(1969)Chevalley groups over local rings Tokyo Journal of Mathematics 21 474-494
[2]  
Abe E.(1976)On normal subgroups of Chevalley groups over commutative rings Tokyo Journal of Mathematics 28 185-198
[3]  
Suzuki K.(1992) SL International Journal of Algebra and Computation 2 357-365
[4]  
Adian S. I.(1991)(ℤ) K-Theory 4 363-397
[5]  
Mennicke J.(2009) K- Journal of Pure and Applied Algebra 213 1075-1085
[6]  
Bak A.(2001) K Rendiconti del Seminario Matematico della Universitá di Padova 106 207-253
[7]  
Bak A.(1995) K Mathematical Proceedings of the Cambridge Philosophical Society 118 35-47
[8]  
Hazrat R.(1983) K- American Journal of Mathematics 105 673-687
[9]  
Vavilov N.(1984)Normality of the elementary subgroup functors Communications in Algebra 12 379-389
[10]  
Bak A.(1975) SL Communications in Algebra 3 481-524