Normal extensions for degenerate conformable fractional α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-order differential operator

被引:0
作者
Meltem Sertbaş
机构
[1] Karadeniz Technical University,Mathematics
关键词
Degenerate conformable differential operator; Minimal and maximal operators; Normal operator; Extension; Spectrum; 47A05; 47A10;
D O I
10.1007/s11868-023-00507-9
中图分类号
学科分类号
摘要
We establish all normal extensions domains structure on the weighed Hilbert space Lα2(H,(0,1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\alpha }^2(H,(0,1))$$\end{document} for a formally normal minimal operators class defined by a degenerate conformable α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-order differential-operator (Bu)(α)(t)+Au(t),α,t∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (Bu)^{(\alpha )}(t)+Au(t), \quad \alpha , t\in (0,1), \end{aligned}$$\end{document}where a positive selfadjoint B:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B:H\rightarrow H $$\end{document} has a closed range, KerB is a nontrivial subspace and A:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A:H\rightarrow H$$\end{document} is a selfadjoint operator. In addition, it is given the analysis of the spectrum set for any normal extensions.
引用
收藏
相关论文
共 36 条
[11]  
Zeng B(2018)Maximal accretive singular quasi-differential operators Hacettepe J. Math. Stat. 47 317-528
[12]  
Zhang H(1982)Linear evolution equations in two Banach spaces Proc. R Soc. Edinb. 91 126-undefined
[13]  
Zhang P(1987)Evolution operators related to semi-groups of class (A) Semigroup Forum 35 521-undefined
[14]  
Neirameh A(2019)Degenerate maximal hyponormal differential operators for the first order Turkish J. Math. 43 undefined-undefined
[15]  
Xie W(2022)Singular degenerate normal operators for first-order Miskolc Math. Notes 23 undefined-undefined
[16]  
Liu C(undefined)undefined undefined undefined undefined-undefined
[17]  
Wu WZ(undefined)undefined undefined undefined undefined-undefined
[18]  
Li W(undefined)undefined undefined undefined undefined-undefined
[19]  
Liu C(undefined)undefined undefined undefined undefined-undefined
[20]  
Glushko VP(undefined)undefined undefined undefined undefined-undefined