Normal extensions for degenerate conformable fractional α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-order differential operator

被引:0
作者
Meltem Sertbaş
机构
[1] Karadeniz Technical University,Mathematics
关键词
Degenerate conformable differential operator; Minimal and maximal operators; Normal operator; Extension; Spectrum; 47A05; 47A10;
D O I
10.1007/s11868-023-00507-9
中图分类号
学科分类号
摘要
We establish all normal extensions domains structure on the weighed Hilbert space Lα2(H,(0,1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\alpha }^2(H,(0,1))$$\end{document} for a formally normal minimal operators class defined by a degenerate conformable α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-order differential-operator (Bu)(α)(t)+Au(t),α,t∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (Bu)^{(\alpha )}(t)+Au(t), \quad \alpha , t\in (0,1), \end{aligned}$$\end{document}where a positive selfadjoint B:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B:H\rightarrow H $$\end{document} has a closed range, KerB is a nontrivial subspace and A:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A:H\rightarrow H$$\end{document} is a selfadjoint operator. In addition, it is given the analysis of the spectrum set for any normal extensions.
引用
收藏
相关论文
共 36 条
[1]  
Khalil R(2014)A new definition of fractional derivative J. Comput. Appl. Math. 264 65-70
[2]  
Al Horani M(2020)Entropy generation in a Mass-Spring-Damper system using a conformable model Symmetry 12 395-128
[3]  
Yousef A(2022)A novel multivariate grey system model with conformable fractional derivative and its applications Comput. Ind. Eng. 164 115-787
[4]  
Sababheh M(2018)New fractional calculus and application to the fractional-order of extended biological population model Bol. da Soc. Parana. de Mat. 36 784-304
[5]  
Duarte C(2020)Continuous grey model with conformable fractional derivative Chaos, Solitons Fractals 139 302-504
[6]  
Jorge M(1968)Degenerate linear differential equations in a Banach space Dokl. Akad. Nauk 181 487-35
[7]  
Juan Rosales-García J(1971)On degenerate parabolic operators Dokl. Akad. Nauk 196 67-1127
[8]  
Rodrigo Correa-Cely C(1987)Linear singular parabolic equations in Banach spaces Math. Z. 195 31-303
[9]  
Wu W(1989)Boundary values of solutions of operator-differential equations Russ. Math. Surv. 44 1120-335
[10]  
Ma X(2019)Selfadjoint singular quasi-differential operators for first order HJSE 6 287-131