Tetravalent one-regular graphs of order 2pq

被引:0
作者
Jin-Xin Zhou
Yan-Quan Feng
机构
[1] Beijing Jiaotong University,Department of Mathematics
来源
Journal of Algebraic Combinatorics | 2009年 / 29卷
关键词
One-regular graph; Symmetric graph; Cayley graph;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this article a complete classification of tetravalent one-regular graphs of order twice a product of two primes is given. It follows from this classification that with the exception of four graphs of orders 12 and 30, all such graphs are Cayley graphs on Abelian, dihedral, or generalized dihedral groups.
引用
收藏
相关论文
共 66 条
[1]  
Bosma W.(1997)The MAGMA algebra system, I: the user language J. Symb. Comput. 24 235-265
[2]  
Cannon C.(1971)On the classification of symmetric graphs with a prime number of vertices Tran. Am. Math. Soc. 158 247-256
[3]  
Playoust C.(1987)On weakly symmetric graphs of order twice a prime J. Comb. Theory B 42 196-211
[4]  
Chao C.Y.(1996)Remarks on path-transitivity on finite graphs Eur. J. Comb. 17 371-378
[5]  
Cheng Y.(1980)Regular groups of automorphisms of cubic graphs J. Comb. Theory B 29 195-230
[6]  
Oxley J.(2004)One-regular cubic graphs of order a small number times a prime or a prime square J. Aust. Math. Soc. 76 345-356
[7]  
Conder M.D.E.(2006)Classifying cubic symmetric graphs of order 10 Sci. China A 49 300-319
[8]  
Praeger C.E.(2007) or 10 J. Comb. Theory B 97 627-646
[9]  
Djoković D.Ž(2005)Cubic symmetric graphs of order a small number times a prime or a prime square Eur. J. Comb. 26 1033-1052
[10]  
Miller G.L.(1952)Classifying cubic symmetric graphs of order 8 Can. J. Math. 4 240-247