Real Structural Stability Radius of Infinite-Dimensional Linear Systems: Its Estimate

被引:0
作者
A. V. Bulatov
P. Diamond
机构
[1] Russian Academy of Sciences,Trapeznikov Institute of Control Sciences
来源
Automation and Remote Control | 2002年 / 63卷
关键词
Mechanical Engineer; Linear System; System Theory; Structural Stability; Lower Estimate;
D O I
暂无
中图分类号
学科分类号
摘要
Lower estimate for the real structural stability radius of infinite-dimensional discrete- and continuous-time linear systems is determined. A metric similar to the Frobenius norm of matrices is introduced on the set of linear bounded operators.
引用
收藏
页码:713 / 722
页数:9
相关论文
共 23 条
[1]  
Fischer A.(1998)Robust Stability of J. Math. Anal. Appl. 226 82-100
[2]  
van Neerven J.M.(1994)-Semigroups and an Application to Stability of Delay Equations SIAM J. Control Optimiz. 32 1503-1541
[3]  
Hinrichsen D.(1987)Robust Stability of Linear Evolution Operators on Banach Spaces SIAM J. Control Optimiz. 25 121-144
[4]  
Pritchard A.J.(1989)The Linear Quadratic Optimal Control Problem for Infinite-Dimensional Systems with Unbounded Input and Output Operators J. Diff. Equat. 77 254-286
[5]  
Pritchard A.J.(1994)Robustness of Linear Systems IMA J. Math. Control Inf. 11 253-276
[6]  
Salamon D.(1995)On Stability Radii of Infinite-Dimensional Time-Varying Discrete-Time Systems Automatica 31 878-890
[7]  
Pritchard A.J.(1999)A Formula for Computation of the Real Stability Radius Int. J. Control 72 493-500
[8]  
Townley S.(1994)An Easily Computable Estimate for the Real Unstructured Math. Res. 77 159-182
[9]  
Wirth F.(1998)-Stability Radius Int. J. Robust Nonlinear Control 8 1169-1188
[10]  
Hinrichsen D.(1989)Stability of Uncertain Systems J. Diff. Equat. 82 219-250