Hilbert Space Inner Products for 𝓟𝓣\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {PT}$\end{document}-symmetric Su-Schrieffer-Heeger Models

被引:0
作者
Frantisek Ruzicka
机构
[1] Nuclear Physics Institute ASCR,Department of Theoretical Physics
关键词
Su-Schrieffer-Heeger model; Physical inner products; Complete set of pseudometrics; Exceptional points;
D O I
10.1007/s10773-015-2531-4
中图分类号
学科分类号
摘要
A Su-Schrieffer-Heeger model with added 𝓟𝓣\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {PT}$\end{document}-symmetric boundary term is studied in the framework of pseudo-hermitian quantum mechanics. For two special cases λ=0 and γ=0, a complete set of pseudometrics P(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {P}^{(k)}$\end{document} is constructed in closed form. When complemented with a condition of positivity, the pseudometrics determine all the physical inner products of the considered model.
引用
收藏
页码:4154 / 4163
页数:9
相关论文
共 46 条
[1]  
Su WP(1979)Solitons in polyacetylene Phys. Rev. Lett. 42 1698-1701
[2]  
Schrieffer JR(2014)$\mathcal {PT}$PT-symmetry in the non-hermitian Su-Schrieffer-Heeger model with complex boundary potentials Phys. Rev. A 89 062102-5246
[3]  
Heeger AJ(2011)Zak phase and the existence of edge states in graphene Phys. Rev. B 84 195452-1018
[4]  
Zhu B(2010)Modulated pair condensate of p-orbital ultracold fermions Phys. Rev. A 82 033610-101
[5]  
Lu R(2010)Topological insulators and superconductors: tenfold way and dimensional hierarchy New J. Phys. 12 065010-10153
[6]  
Chen S(1998)Real spectra in non-hermitian Hamiltonians having $\mathcal {PT}$PT-symmetry Phys. Rev. Lett. 80 5243-281
[7]  
Delplace P(2010)Pseudo-hermitian representation of quantum mechanics Int. J. Geom. Meth. Mod. Phys. 7 1191-2890
[8]  
Ullmo D(2007)Making sense of non-hermitian Hamiltonians Rep. Prog. Phys. 70 947-2162
[9]  
Montambaux G(2007)The ODE/IM correspondence J. Phys. A: Math. Theor. 40 R205-undefined
[10]  
Zhang Z(2009)Three-Hilbert-space formulation of quantum mechanics SIGMA 5 1-undefined