The Stability Analysis of Predictor–Corrector Method in Solving American Option Pricing Model

被引:0
作者
R. Kalantari
S. Shahmorad
D. Ahmadian
机构
[1] University of Tabriz,Faculty of Mathematical sciences
来源
Computational Economics | 2016年 / 47卷
关键词
Penalty method; American option pricing; Finite difference method; Rational approximation; Method of lines ; Predictor–Corrector method;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new technique is investigated to speed up the order of accuracy for American put option pricing under the Black–Scholes (BS) model. First, we introduce the mathematical modeling of American put option, which leads to a free boundary problem. Then the free boundary is removed by adding a small and continuous penalty term to the BS model that cause American put option problem to be solvable on a fixed domain. In continuation we construct the method of lines (MOL) in space and reach a non-linear problem and we show that the proposed MOL is more stable than the other kinds. To deal with the non-linear problem, an algorithm is used based on the predictor–corrector method which corresponds to two parameters, θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} and ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}. These parameters are chosen optimally using a rational approximation to determine the order of time convergence. Finally in numerical results a second order convergence is shown in both space and time variables.
引用
收藏
页码:255 / 274
页数:19
相关论文
共 37 条
[1]  
Black F(1973)THE pricing of options and corporate liabilities The Journal of Political Economy 81 637654-108
[2]  
Scholes MS(1972)A new efficient algorithm for solving differential-algebraic systems using implicit backward differentiation formulas Proceedings of the IEEE 60 98-462
[3]  
Brayton RK(1977)The valuation of American put options The Journal of Finance 32 449-150
[4]  
Gustavson FG(1996)American option valuation: New bounds, approximations, and a comparison of existing methods Review of Financial Studies 9 121-186
[5]  
Hachtel GD(1992)A second-order L-stable time discretisation of the semiconductor device equation Journal of Computational and Applied Mathematics 42 175-502
[6]  
Brennan M(2006)A linearly implicit predictorcorrector scheme for pricing American options using apenalty method approach Journal of Banking and Finance 30 459-450
[7]  
Schwartz E(2014)American option pricing with time-varying parameters Computational Economics 241 439-183
[8]  
Broadie M(1973)The theory of rational option pricing Bell Journal of Economics and Management Science 4 141-23
[9]  
Detemple J(1992)The pricing of the American option Annals of Applied Probability 2 1-98
[10]  
Fitzsimons CJ(2002)Penalty and front-fixing methods for the numerical solution of American option problems The Journal of Computational Finance 5 67-307