Self-supervised deep metric learning for ancient papyrus fragments retrieval

被引:0
|
作者
Antoine Pirrone
Marie Beurton-Aimar
Nicholas Journet
机构
[1] LaBRI: Laboratoire Bordelais de Recherche en Informatique,
来源
International Journal on Document Analysis and Recognition (IJDAR) | 2021年 / 24卷
关键词
Ancient document reconstruction; Deep metric learning; Information retrieval; Self-supervised learning; Domain adaptation;
D O I
暂无
中图分类号
学科分类号
摘要
This work focuses on document fragments association using deep metric learning methods. More precisely, we are interested in ancient papyri fragments that need to be reconstructed prior to their analysis by papyrologists. This is a challenging task to automatize using machine learning algorithms because labeled data is rare, often incomplete, imbalanced and of inconsistent conservation states. However, there is a real need for such software in the papyrology community as the process of reconstructing the papyri by hand is extremely time-consuming and tedious. In this paper, we explore ways in which papyrologists can obtain useful matching suggestion on new data using Deep Convolutional Siamese-Networks. We emphasize on low-to-no human intervention for annotating images. We show that the from-scratchself-supervised approach we propose is more effective than using knowledge transfer from a large dataset, the former achieving a top-1 accuracy score of 0.73 on a retrieval task involving 800 fragments.
引用
收藏
页码:219 / 234
页数:15
相关论文
共 50 条
  • [21] AN ITERATIVE FRAMEWORK FOR SELF-SUPERVISED DEEP SPEAKER REPRESENTATION LEARNING
    Cai, Danwei
    Wang, Weiqing
    Li, Ming
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 6728 - 6732
  • [22] Deep Semi-Supervised and Self-Supervised Learning for Diabetic Retinopathy Detection
    Arrieta, Jose
    Perdomo, Oscar J.
    Gonzalez, Fabio A.
    18TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2023, 12567
  • [23] NVST Image Denoising Based on Self-Supervised Deep Learning
    Lu Xianwei
    Liu Hui
    Shang Zhenhong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (06)
  • [24] Deep anomaly detection with self-supervised learning and adversarial training
    Zhang, Xianchao
    Mu, Jie
    Zhang, Xiaotong
    Liu, Han
    Zong, Linlin
    Li, Yuangang
    PATTERN RECOGNITION, 2022, 121
  • [25] SeSe-Net: Self-Supervised deep learning for segmentation
    Zeng Zeng
    Yang Xulei
    Yu Qiyun
    Yao Meng
    Zhang Le
    PATTERN RECOGNITION LETTERS, 2019, 128 : 23 - 29
  • [26] Online Self-Supervised Deep Learning for Intrusion Detection Systems
    Nakip, Mert
    Gelenbe, Erol
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 5668 - 5683
  • [27] Gated Self-supervised Learning for Improving Supervised Learning
    Fuadi, Erland Hillman
    Ruslim, Aristo Renaldo
    Wardhana, Putu Wahyu Kusuma
    Yudistira, Novanto
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 611 - 615
  • [28] Self-Supervised Learning for Recommendation
    Huang, Chao
    Xia, Lianghao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5136 - 5139
  • [29] Longitudinal self-supervised learning
    Zhao, Qingyu
    Liu, Zixuan
    Adeli, Ehsan
    Pohl, Kilian M.
    MEDICAL IMAGE ANALYSIS, 2021, 71
  • [30] Information Retrieval from Alternative Data using Zero-Shot Self-Supervised Learning
    Assareh, Amin
    2022 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING AND ECONOMICS (CIFER), 2022,