TWO-DISTANCE PRESERVING FUNCTIONS FROM EUCLIDEAN SPACE

被引:0
|
作者
Károly Bezdek
Robert Connelly
机构
关键词
Real Number; EUCLIDEAN Space; Preserve Function;
D O I
10.1023/A:1004859411072
中图分类号
学科分类号
摘要
Let 0 < c < s be fixed real numbers such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${c \mathord{\left/ {\vphantom {c s}} \right. \kern-\nulldelimiterspace} s} \leqslant {{\left( {\sqrt 5 - 1} \right)} \mathord{\left/ {\vphantom {{\left( {\sqrt 5 - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}$$ \end{document}, and let f : E2 → Ed for d ≥ 2 be a function such that for every p, q ∈ E2 if ¦p − q¦ = c, then ¦f(p) − f(q)¦ ≤ c, and if ¦p − q¦ = s, then ¦f(p) − f(q)¦ ≥ s. Then f is a congruence. This result depends on and expands a result of Rádo et. al. [9], where a similar result holds, but for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${{\sqrt 3 } \mathord{\left/ {\vphantom {{\sqrt 3 } 3}} \right. \kern-\nulldelimiterspace} 3}$$ \end{document} replacing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${{\left( {\sqrt 5 - 1} \right)} \mathord{\left/ {\vphantom {{\left( {\sqrt 5 - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}$$ \end{document}. We also present a further extensions where E2 is replaced by En for n > 2 and where the range of c/s is enlarged.
引用
收藏
页码:185 / 200
页数:15
相关论文
共 50 条
  • [41] Boolean functions as points on the hypersphere in the Euclidean space
    Logachev, Oleg A.
    Fedorov, Sergey N.
    Yashchenko, Valerii V.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2019, 29 (02): : 89 - 101
  • [42] Optimization of the Hausdorff distance between sets in Euclidean space
    V. N. Ushakov
    A. S. Lakhtin
    P. D. Lebedev
    Proceedings of the Steklov Institute of Mathematics, 2015, 291 : 222 - 238
  • [43] Approximating Gromov-Hausdorff distance in Euclidean space
    Majhi, Sushovan
    Vitter, Jeffrey
    Wenk, Carola
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2024, 116
  • [44] THE ANALYSIS OF ADDITIVE SET FUNCTIONS IN EUCLIDEAN SPACE
    ROGERS, CA
    TAYLOR, SJ
    ACTA MATHEMATICA, 1959, 101 (3-4) : 273 - 302
  • [45] A Goursat Decomposition for Polyharmonic Functions in Euclidean Space
    Brackx, Fred
    Delanghe, Richard
    De Schepper, Hennie
    Soucek, Vladimir
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (03) : 563 - 575
  • [46] The primitives of Henstock integrable functions in Euclidean space
    Lu, JT
    Yee, LP
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 : 173 - 180
  • [47] A comment on Schwinger functions in Euclidean Rindler space
    Svaiter, N. F.
    Zarro, C. A. D.
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (09)
  • [48] A Goursat Decomposition for Polyharmonic Functions in Euclidean Space
    Fred Brackx
    Richard Delanghe
    Hennie De Schepper
    Vladimir Souček
    Advances in Applied Clifford Algebras, 2012, 22 : 563 - 575
  • [49] The Density of Sets Avoiding Distance 1 in Euclidean Space
    Bachoc, Christine
    Passuello, Alberto
    Thiery, Alain
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (04) : 783 - 808
  • [50] AN AVERAGE DISTANCE RESULT IN EUCLIDEAN N-SPACE
    STRANTZEN, J
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1982, 26 (03) : 321 - 330