TWO-DISTANCE PRESERVING FUNCTIONS FROM EUCLIDEAN SPACE

被引:0
|
作者
Károly Bezdek
Robert Connelly
机构
关键词
Real Number; EUCLIDEAN Space; Preserve Function;
D O I
10.1023/A:1004859411072
中图分类号
学科分类号
摘要
Let 0 < c < s be fixed real numbers such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${c \mathord{\left/ {\vphantom {c s}} \right. \kern-\nulldelimiterspace} s} \leqslant {{\left( {\sqrt 5 - 1} \right)} \mathord{\left/ {\vphantom {{\left( {\sqrt 5 - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}$$ \end{document}, and let f : E2 → Ed for d ≥ 2 be a function such that for every p, q ∈ E2 if ¦p − q¦ = c, then ¦f(p) − f(q)¦ ≤ c, and if ¦p − q¦ = s, then ¦f(p) − f(q)¦ ≥ s. Then f is a congruence. This result depends on and expands a result of Rádo et. al. [9], where a similar result holds, but for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${{\sqrt 3 } \mathord{\left/ {\vphantom {{\sqrt 3 } 3}} \right. \kern-\nulldelimiterspace} 3}$$ \end{document} replacing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${{\left( {\sqrt 5 - 1} \right)} \mathord{\left/ {\vphantom {{\left( {\sqrt 5 - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}$$ \end{document}. We also present a further extensions where E2 is replaced by En for n > 2 and where the range of c/s is enlarged.
引用
收藏
页码:185 / 200
页数:15
相关论文
共 50 条
  • [1] On the two-distance embedding in real Euclidean space of coherent configuration of type (2,2;3)
    Bannai, Eiichi
    Bannai, Etsuko
    Lee, Chin-Yen
    Xiang, Ziqing
    Yu, Wei-Hsuan
    DISCRETE MATHEMATICS, 2025, 348 (04)
  • [2] Regular Two-Distance Sets
    Casazza, Peter G.
    Tran, Tin T.
    Tremain, Janet C.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (03)
  • [3] Spherical two-distance sets
    Musin, Oleg R.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (04) : 988 - 995
  • [4] Regular Two-Distance Sets
    Peter G. Casazza
    Tin T. Tran
    Janet C. Tremain
    Journal of Fourier Analysis and Applications, 2020, 26
  • [5] The Two-Distance Sets in Dimension Four
    Szollosi, Ferenc
    DISCRETE AND COMPUTATIONAL GEOMETRY, GRAPHS, AND GAMES, JCDCGGG 2018, 2021, 13034 : 18 - 27
  • [6] An analogue of a theorem of van der Waerden, and its application to two-distance preserving mappings
    Alexandrov, Victor
    PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (02) : 252 - 257
  • [7] An analogue of a theorem of van der Waerden, and its application to two-distance preserving mappings
    Victor Alexandrov
    Periodica Mathematica Hungarica, 2016, 72 : 252 - 257
  • [8] On representations of graphs as two-distance sets
    Alfakih, A. Y.
    DISCRETE MATHEMATICS, 2020, 343 (0I)
  • [9] The classification of two-distance transitive dihedrants ☆
    Huang, Jun-Jie
    Feng, Yan-Quan
    Zhou, Jin-Xin
    Yin, Fu-Gang
    JOURNAL OF ALGEBRA, 2025, 667 : 508 - 529
  • [10] Finite two-distance tight frames
    Barg, Alexander
    Glazyrin, Alexey
    Okoudjou, Kasso A.
    Yu, Wei-Hsuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 : 163 - 175