This paper is devoted to study the asymptotic behaviors of the solutions to a model of hyperbolic balance laws with damping on the quarter plane
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(x,t) \in \mathbb{R}_ + \times \mathbb{R}_ + .$
\end{document} We show the optimal convergence rates of the solutions to their corresponding nonlinear diffusion waves, which are the solutions of the corresponding nonlinear parabolic equation given by the related Darcy’s law. The optimal Lp-rates
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(1 + t)^{ - (1 - \tfrac{1}
{{2p}})} $
\end{document} for 2 ≤ p ≤ ∞ obtained in the present paper improve those
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(1 + t)^{ - (\tfrac{3}
{4} - \tfrac{1}
{{2p}})} $
\end{document} in the previous works on the IBVP by K. Nishihara and T. Yang [J. Differential Equations156 (1999), 439–458] and by P. Marcati and M. Mei [Quart. Appl. Math. 56 (2000), 763–784]. Both the energy method and the method of Fourier transform are efficiently used to complete the proof.
机构:
Oita Univ, Fac Sci & Technol, Div Math Sci, 700 Dannoharu, Oita 8701192, JapanOita Univ, Fac Sci & Technol, Div Math Sci, 700 Dannoharu, Oita 8701192, Japan
机构:
Cent China Normal Univ, Dept Math, Lab Nonlinear Anal, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Dept Math, Lab Nonlinear Anal, Wuhan 430079, Peoples R China
Liu, YH
Zhu, CJ
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Dept Math, Lab Nonlinear Anal, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Dept Math, Lab Nonlinear Anal, Wuhan 430079, Peoples R China
机构:
Oita Univ, Fac Sci & Technol, Div Math Sci, 700 Dannoharu, Oita 8701192, JapanOita Univ, Fac Sci & Technol, Div Math Sci, 700 Dannoharu, Oita 8701192, Japan