Toeplitz operators with BMO symbols on the weighted Bergman space of the unit ball

被引:0
作者
Kan Zhang
Chao Mei Liu
Yu Feng Lu
机构
[1] Dalian University of Technology,School of Mathematical Sciences
[2] Shenyang Agricultural University,College of Sciences
[3] Dalian Jiaotong University,School of Science
来源
Acta Mathematica Sinica, English Series | 2011年 / 27卷
关键词
Toeplitz operator; BMO; Berezin transform; 47B35; 32A37;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove that the boundedness and compactness of Toeplitz operator with a BMOα1 symbol on the weighted Bergman space Aα2(Bn) of the unit ball is completely determined by the behavior of its Berezin transform, where α > −1 and n ≥ 1.
引用
收藏
页码:2129 / 2142
页数:13
相关论文
共 22 条
[1]  
Zhu K.(1988)Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains J. Operator Theory 20 329-357
[2]  
Békollé D.(1990)BMO in the Bergman metric on bounded symmetric domains J. Funct. Anal. 93 310-350
[3]  
Berger C. A.(1999)Compact Toeplitz operators via the Berezin transform on bounded symmetric domains Integr. Equ. Oper. Theory 33 426-455
[4]  
Coburn L. A.(1998)Compact operators via the Berezin transform Indiana Univ. Math. J. 47 387-400
[5]  
Engliš M.(2003)Toeplitz operators with BMO symbols and the Berezin transform Int. J. Math. Sci. 46 2929-2945
[6]  
Axler S.(1987)VMO, ESV and Toeplitz operators on the Bergman space Trans. Amer. Math. Soc. 302 617-646
[7]  
Zheng D.(1988)Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus Amer. J. Math. 110 921-953
[8]  
Zorboska N.(1994)BMO on strongly pseudoconvex domains: Hankel operators, duality and Trans. Amer. Math. Soc. 346 661-691
[9]  
Zhu K.(1992)-estimates Pacific J. Math. 155 377-395
[10]  
Berger C. A.(1987)BMO and Hankel operators on Bergman spaces J. Funct. Anal. 73 345-368