Stability criterion to explicit finite difference applied to the Bresse system

被引:5
|
作者
Almeida Júnior D.S. [1 ]
Muñoz Rivera J.E. [2 ]
机构
[1] Department of Mathematics, Federal University of Pará, Augusto Corrêa Street, 01, Belém, 66075-110, Pará
[2] National Laboratory for Scientific Computation, Getúlio Vargas Street, Number 333, Petrópolis, 25651-075, RJ
关键词
Energy method; Finite difference; Locking number; Stability criterion;
D O I
10.1007/s13370-014-0244-0
中图分类号
学科分类号
摘要
In this work, we show that the stability criterion of the explicit time integration method applied to the Bresse system is given by $$\begin{aligned} \Delta t\le \displaystyle \frac{2\epsilon }{\sqrt{ \bigg (12 +\displaystyle \frac{\epsilon ^2}{R^2}\bigg )}\displaystyle \frac{k G}{\rho }}, \end{aligned}$$Δt≤2ϵ(12+ϵ2 R2)kGρ,where the thickness $$\epsilon $$ϵ constitutes a limitation to compute the numerical solutions. This restriction to the stability criterion is not standard (is not CFL condition) and if $$\epsilon <<1$$ϵ<<1 it is very restrictive to numerical computations. To overcome this restriction, we use the technics performed by Wright [Commun Appl Numer Methods 3:181–185 (1987), Commun Numer Methods Eng 14:81–86 (1998)] to minimize the influence of $$\epsilon $$ϵ on stability criterion such that the CFL condition prevails. © 2014, African Mathematical Union and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:761 / 778
页数:17
相关论文
共 50 条
  • [21] Computable stability criterion of linear neutral systems with unstable difference operators
    Hu, Guang-Da
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 271 : 223 - 232
  • [22] Explicit finite difference methods for heat transfer simulation and thermal process design
    Welt, BA
    Teixeira, AA
    Chau, KV
    Balaban, MO
    Hintenlang, DE
    JOURNAL OF FOOD SCIENCE, 1997, 62 (02) : 230 - 236
  • [23] A novel optimization technique for explicit finite-difference schemes with application to AeroAcoustics
    Cunha, Guilherme
    Redonnet, Stephane
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 78 (04) : 189 - 216
  • [24] An explicit finite-difference scheme for wave propagation in nonlinear optical structures
    Furati, KM
    Alsunaidi, MA
    Masoudi, HM
    APPLIED MATHEMATICS LETTERS, 2001, 14 (03) : 297 - 302
  • [25] A sharp stability criterion for the Vlasov–Maxwell system
    Zhiwu Lin
    Walter A. Strauss
    Inventiones mathematicae, 2008, 173 : 497 - 546
  • [26] Stability for thermo-elastic Bresse system of second sound with past history and delay term
    Zennir, Khaled
    Ouchenane, Djamel
    Choucha, Abdelbaki
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2020, 36 (04) : 315 - 328
  • [27] Finite difference beam propagation method applied to photonic crystal fibres
    Zdanowicz, Mariusz
    Marciniak, Marian
    Jaworski, Marek
    Bekker, Ella
    Benson, Trevor
    ICTON 2007: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, VOL 4, 2007, : 290 - +
  • [28] Implicit-explicit finite-difference lattice boltzmann method for compressible flows
    Wang, Y.
    He, Y. L.
    Zhao, T. S.
    Tang, G. H.
    Tao, W. Q.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (12): : 1961 - 1983
  • [29] Stability condition of finite difference solution for viscoelastic wave equations
    Sun, Chengyu
    Xiao, Yunfei
    Yin, Xingyao
    Peng, Hongchao
    EARTHQUAKE SCIENCE, 2009, 22 (05) : 479 - 485
  • [30] Stability condition of finite difference solution for viscoelastic wave equations
    Chengyu Sun 1
    Earthquake Science, 2009, (05) : 479 - 485