Positive and Sign-changing Solutions for Critical Schrödinger–Poisson Systems with Sign-changing Potential

被引:0
作者
Xiao-Ping Chen
Chun-Lei Tang
机构
[1] Southwest University,School of Mathematics and Statistics
来源
Qualitative Theory of Dynamical Systems | 2022年 / 21卷
关键词
Schrödinger–Poisson system; Critical growth; Sign-changing solutions; Variational methods; 35A15; 35J20; 35J50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the following critical Schrödinger–Poisson system -Δu+V(x)u+K(x)ϕu=f(u)+|u|4u,x∈R3,-Δϕ=K(x)u2,x∈R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+V(x)u+K(x)\phi u = f(u)+|u|^4u,\ \ \ &{}\ x \in \mathbb {R}^{3},\\ -\Delta \phi =K(x)u^2, \ \ \ &{}\ x \in \mathbb {R}^{3},\\ \end{array}\right. } \end{aligned}$$\end{document}where V(x) is a (possible) sign-changing potential, K(x) is a nonnegative function and the nonlinearity f∈C(R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal {C}(\mathbb {R},\mathbb {R})$$\end{document}. By using variational methods with a more general global compactness lemma, we obtain a positive least energy solution and a least energy sign-changing solution with exactly two nodal domains, and we also prove that the energy of least energy sign-changing solution is strictly larger than twice that of least energy solutions. Moreover, this paper further analyzes the exponential decay of the positive least energy solution given by Liu, Liao and Tang (Nonlinearity30 (2017), 899–911), and can be regarded as the supplementary work of it.
引用
收藏
相关论文
共 55 条
  • [1] Batista AM(2018)Positive and nodal solutions for a nonlinear Schrödinger-Poisson system with sign-changing potentials Nonlinear Anal. Real World Appl. 39 142-156
  • [2] Furtado MF(1998)An eigenvalue problem for the Schrödinger-Maxwell equations Topol. Methods Nonlinear Anal. 11 283-293
  • [3] Benci V(2002)Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations Rev. Math. Phys. 14 409-420
  • [4] Fortunato D(1983)Nonlinear scalar field equations. I. Existence of a ground state Arch. Rational Mech. Anal. 82 313-345
  • [5] Benci V(1983)A relation between pointwise convergence of functions and convergence of functionals Proc. Amer. Math. Soc. 88 486-490
  • [6] Fortunato D(1983)Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents Comm. Pure Appl. Math. 36 437-477
  • [7] Berestycki H(1986)Some existence results for superlinear elliptic boundary value problems involving critical exponents J. Funct. Anal. 69 289-306
  • [8] Lions P-L(2010)Positive solutions for some non-autonomous Schrödinger-Poisson systems J. Differential Equations 248 521-543
  • [9] Brézis H(2017)Ground state sign-changing solutions for asymptotically cubic or super-cubic Schrödinger-Poisson systems without compact condition Comput. Math. Appl. 74 446-458
  • [10] Lieb E(2021)Least energy sign-changing solutions for Schrödinger-Poisson system with critical growth Commun. Pure Appl. Anal. 20 2291-2312