On the Order Derivatives of Bessel Functions

被引:0
作者
T. M. Dunster
机构
[1] San Diego State University,Department of Mathematics and Statistics
来源
Constructive Approximation | 2017年 / 46卷
关键词
Bessel functions; Asymptotic approximations; Series expansions; Primary 33C10; Secondary 41A60; 41A58;
D O I
暂无
中图分类号
学科分类号
摘要
The derivatives with respect to order for the Bessel functions Jν(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\nu }(x)$$\end{document} and Yν(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_{\nu }(x)$$\end{document}, where ν>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu >0$$\end{document} and x≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\ne 0$$\end{document} (real or complex), are studied. Representations are derived in terms of integrals that involve the products pairs of Bessel functions, and in turn series expansions are obtained for these integrals. From the new integral representations for ∂Jν(x)/∂ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial J_{\nu }(x)/\partial \nu $$\end{document} and ∂Yν(x)/∂ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial Y_{\nu }(x)/\partial \nu $$\end{document}, asymptotic approximations involving Airy functions are constructed for the case ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} large, which are uniformly valid for 0<x<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<x<\infty $$\end{document}.
引用
收藏
页码:47 / 68
页数:21
相关论文
共 10 条
[1]  
Albright JR(1977)Integrals of products of Airy functions J. Phys. A 10 485-490
[2]  
Apelblat A(1985)Integral representations of derivatives and integrals with respect to the order of the Bessel functions IMA J. Appl. Math. 34 187-210
[3]  
Kravitsky N(2005), the anger function Integral Transforms Spec. Funct. 16 187-198
[4]  
Brychkov YuA(2010), and the integral Bessel function. Integral Transforms Spec. Funct. 21 581-588
[5]  
Geddes KO(2012)On the derivatives of the Bessel and Struve functions with respect to the order Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468 2667-2681
[6]  
Cohl HS(2000)Derivatives with respect to the degree and order of associated Legendre functions for J. Lond. Math. Soc. (2) 61 197-215
[7]  
Dominici DE(1958) using modified Bessel functions J. Math. Phys. 37 75-78
[8]  
Gill PMW(undefined)A remarkable identity involving Bessel functions undefined undefined undefined-undefined
[9]  
Landau LJ(undefined)Bessel functions: monotonicity and bounds undefined undefined undefined-undefined
[10]  
Oberhettinger F(undefined)On the derivative of Bessel functions with respect to the order undefined undefined undefined-undefined