On the Asymptotic Stability of an Hassell Predator-Prey Model with Mutual Interference

被引:0
作者
Roberta De Luca
机构
[1] Complesso Universitario Monte S. Angelo,University of Naples Federico II, Department of Mathematics and Applications ‘R. Caccioppoli’
来源
Acta Applicandae Mathematicae | 2012年 / 122卷
关键词
Hassell; Nonautonomous O.D.Es system; Global stability; Absorbing set;
D O I
暂无
中图分类号
学科分类号
摘要
The longtime behaviour of a nonautonomous, bidimensional, Lotka-Volterra-Hassell model with mutual interference is investigated. The existence of an absorbing set is shown together with global nonlinear asymptotic stability of the positive critical points.
引用
收藏
页码:191 / 204
页数:13
相关论文
共 28 条
[1]  
Samuelson P.A.(1971)Generalized predator-prey oscillations in ecological and economic equilibrium Proc. Natl. Acad. Sci. USA 68 980-983
[2]  
Walter C.(1974)The global asymptotic stability of prey predator systems with second order dissipation Bull. Math. Biol. 36 215-217
[3]  
Freedman H.I.(1975)Perturbation of two-dimensional predator-prey equations SIAM J. Appl. Math. 28 1-10
[4]  
Waltman P.(1975)Perturbation of two-dimensional predator-prey equations with an unperturbed critical point SIAM J. Appl. Math. 29 719-733
[5]  
Freedman H.I.(2002)Persistence and global stability for nonautonomous Lotka-Volterra delay differential systems Commun. Appl. Nonlinear Anal. 9 31-45
[6]  
Waltman P.(2002)Nonautonomous Lotka-Volterra systems with delays J. Differ. Equ. 179 538-561
[7]  
Muroya Y.(2002)Global asymptotic stability in Appl. Math. Comput. 130 295-309
[8]  
Teng Z.(2004)-species nonautonomous Lotka-Volterra competitive systems with infinite delays Appl. Math. Comput. 152 99-109
[9]  
Xu R.(2004)Permanence in nonautonomous Lotka-Volterra system with predator-prey Nonlinear Anal., Real World Appl. 5 265-276
[10]  
Chaplain M.A.J.(2006)The permanence and global attractivity in a nonautonomous Lotka-Volterra system Appl. Math. Lett. 19 445-450