The polynomial multidimensional Szemerédi Theorem along shifted primes

被引:0
作者
Nikos Frantzikinakis
Bernard Host
Bryna Kra
机构
[1] University of Crete,Department of Mathematics
[2] Université de Marne la Vallée & CNRS UMR 8050,Laboratoire d’analyse et de mathématiques appliquées
[3] Northwestern University,Department of Mathematics
来源
Israel Journal of Mathematics | 2013年 / 194卷
关键词
Probability Space; Nilpotent Group; Arithmetic Progression; Uniformity Result; Ergodic Average;
D O I
暂无
中图分类号
学科分类号
摘要
If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\vec q_1 ,...,\vec q_m $ \end{document}: ℤ → ℤℓ are polynomials with zero constant terms and E ⊂ ℤℓ has positive upper Banach density, then we show that the set E ∩ (E − \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\vec q_1 $ \end{document}(p − 1)) ∩ … ∩ (E − \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\vec q_m $ \end{document}(p − 1)) is nonempty for some prime p. We also prove mean convergence for the associated averages along the prime numbers, conditional to analogous convergence results along the full integers. This generalizes earlier results of the authors, of Wooley and Ziegler, and of Bergelson, Leibman and Ziegler.
引用
收藏
页码:331 / 348
页数:17
相关论文
共 30 条
[1]  
Bergelson V.(2000)Aspects of uniformity in recurrence Colloquium Mathematicum 84/85 549-576
[2]  
Host B.(1996)Polynomial extensions of van der Waerden’s and Szemer édi’s theorems Journal of the American Mathematical Society 9 725-753
[3]  
McCutcheon R.(2011)The shifted primes and the multidimensional Szemerédi and polynomial van der Waerden Theorems Comptes Rendus Mathématique, Académie des Sciences, Paris 349 123-125
[4]  
Parreau F.(2011)Ergodic averages of commuting transformations with distinct degree polynomial iterates Proceedings of the London Mathematical Society, Third Series 102 801-842
[5]  
Bergelson V.(2007)Multiple recurrence and convergence for sequences related to the prime numbers Journal für die Reine und Angewandte Mathematik 611 131-144
[6]  
Leibman A.(1977)Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions Journal d’Analyse Mathématique 71 204-256
[7]  
Bergelson V.(1986)IPr sets, Szemerédi’s Theorem, and Ramsey Theory American Mathematical Society, Bulletin 14 275-278
[8]  
Leibman A.(2001)A new proof of Szemerédi’s theorem Geometric and Functional Analysis 11 465-588
[9]  
Ziegler T.(2010)Linear equations in the primes Annals of Mathematics 171 1753-1850
[10]  
Chu C.(2012)The Möbius function is strongly orthogonal to nilsequences Annals of Mathematics (2) 175 541-566