Frattini Theory for Classes of Finite Universal Algebras of Malcev Varieties

被引:0
作者
Guo Wenbin
K. P. Shum
机构
[1] Xuzhou Normal University,
[2] Chinese University of Hong Kong,undefined
来源
Siberian Mathematical Journal | 2002年 / 43卷
关键词
universal algebra; formation; Schunck class; Frattini theory;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the Frattini theory of formations and Schunck classes of finite groups to some Frattini theory of formations and Schunck classes of finite universal algebras of Malcev varieties. We prove that if F≠(1) is a nonempty formation (Schunck class) of algebras of a Malcev variety, then its Frattini subformation (Frattini Schunck subclass) Φ(F) consists of all nongenerators of F; moreover, if M is a formation (Schunck class) in F; then Φ(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \subseteq$$ \end{document}Φ(F).
引用
收藏
页码:1039 / 1046
页数:7
相关论文
共 18 条
  • [1] Monk J. D.(1971)On the general theory of m-groups Fund. Math. 72 233-244
  • [2] Sioson F. M.(1984)On products of formations of algebraic systems Algebra i Logika 23 712-729
  • [3] Shemetkov L. A.(1978)Saturated formations of soluble Lie algebras in characteristic 0 Arch. Math. 30 477-480
  • [4] Barnes D. W.(1969)On the theory of soluble Lie algebras Math. Z. 106 343-354
  • [5] Barnes D. W.(2002)On totally local formations of groups Comm. Algebra 30 2117-2131
  • [6] Gastineau-Hills H.(1967)H-Untergruppen in endlichen au Ösbaren Gruppen Math. Z. 97 326-330
  • [7] Guo W.(2002)Formation operators on classes of algebras Comm. Algebra 30 3457-3472
  • [8] Shum K. P.(1988)Frattini classes of formations of finite groups Bull. Univ. Mat. Ital. B 601-611
  • [9] Schunck H.(1981)On subformations of the formations of finite groups Dokl. Akad. Nauk BSSR 25 492-495
  • [10] Guo W.(1999)Minimal verbal subgroups On τ-closed formations of n-ary groups 12 65-70