An Invariance Principle to Ferrari–Spohn Diffusions

被引:0
|
作者
Dmitry Ioffe
Senya Shlosman
Yvan Velenik
机构
[1] Technion-Israel Institute of Technology,William Davidson Faculty of Industrial Engineering and Management
[2] Université de Toulon,Aix Marseille Université
[3] CNRS,Section de Mathématiques
[4] Institute of the Information Transmission Problems,undefined
[5] RAS,undefined
[6] Université de Genève,undefined
来源
Communications in Mathematical Physics | 2015年 / 336卷
关键词
Partition Function; Random Walk; Invariance Principle; Liouville Operator; Compact Embedding;
D O I
暂无
中图分类号
学科分类号
摘要
We prove an invariance principle for a class of tilted 1 + 1-dimensional SOS models or, equivalently, for a class of tilted random walk bridges in Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}_+}$$\end{document}. The limiting objects are stationary reversible ergodic diffusions with drifts given by the logarithmic derivatives of the ground states of associated singular Sturm–Liouville operators. In the case of a linear area tilt, we recover the Ferrari–Spohn diffusion with log-Airy drift, which was derived in Ferrari and Spohn (Ann Probab 33(4):1302—1325, 2005) in the context of Brownian motions conditioned to stay above circular and parabolic barriers.
引用
收藏
页码:905 / 932
页数:27
相关论文
共 50 条