An Invariance Principle to Ferrari–Spohn Diffusions

被引:0
|
作者
Dmitry Ioffe
Senya Shlosman
Yvan Velenik
机构
[1] Technion-Israel Institute of Technology,William Davidson Faculty of Industrial Engineering and Management
[2] Université de Toulon,Aix Marseille Université
[3] CNRS,Section de Mathématiques
[4] Institute of the Information Transmission Problems,undefined
[5] RAS,undefined
[6] Université de Genève,undefined
来源
Communications in Mathematical Physics | 2015年 / 336卷
关键词
Partition Function; Random Walk; Invariance Principle; Liouville Operator; Compact Embedding;
D O I
暂无
中图分类号
学科分类号
摘要
We prove an invariance principle for a class of tilted 1 + 1-dimensional SOS models or, equivalently, for a class of tilted random walk bridges in Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}_+}$$\end{document}. The limiting objects are stationary reversible ergodic diffusions with drifts given by the logarithmic derivatives of the ground states of associated singular Sturm–Liouville operators. In the case of a linear area tilt, we recover the Ferrari–Spohn diffusion with log-Airy drift, which was derived in Ferrari and Spohn (Ann Probab 33(4):1302—1325, 2005) in the context of Brownian motions conditioned to stay above circular and parabolic barriers.
引用
收藏
页码:905 / 932
页数:27
相关论文
共 50 条
  • [21] The spectral shift function and the invariance principle
    Pushnitski, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 183 (02) : 269 - 320
  • [22] The invariance principle for associated random fields
    Kim, TS
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1996, 26 (04) : 1443 - 1454
  • [23] The invariance principle in disturbance rejection control
    Li X.-Y.
    Gao Z.-Q.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2020, 37 (02): : 236 - 244
  • [24] The invariance principle for p-θ chain
    Hu, Di He
    Xiao, Zheng Yan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (01) : 41 - 56
  • [25] Invariance principle for the random conductance model
    S. Andres
    M. T. Barlow
    J.-D. Deuschel
    B. M. Hambly
    Probability Theory and Related Fields, 2013, 156 : 535 - 580
  • [26] Holderian invariance principle for linear processes
    Juodis, Mindaugas
    Rackauskas, Alfredas
    Suquet, Charles
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2009, 5 : 47 - 64
  • [27] The invariance principle in baseball: new evidence
    Rockerbie, Duane W.
    APPLIED ECONOMICS, 2018, 50 (23) : 2613 - 2621
  • [28] Invariance principle for the random conductance model
    Andres, S.
    Barlow, M. T.
    Deuschel, J. -D.
    Hambly, B. M.
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (3-4) : 535 - 580
  • [29] Invariance principle via orthomartingale approximation
    Giraudo, Davide
    STOCHASTICS AND DYNAMICS, 2018, 18 (06)
  • [30] An invariance principle for nonlinear switched systems
    Bacciotti, A
    Mazzi, L
    SYSTEMS & CONTROL LETTERS, 2005, 54 (11) : 1109 - 1119