An Invariance Principle to Ferrari–Spohn Diffusions

被引:0
|
作者
Dmitry Ioffe
Senya Shlosman
Yvan Velenik
机构
[1] Technion-Israel Institute of Technology,William Davidson Faculty of Industrial Engineering and Management
[2] Université de Toulon,Aix Marseille Université
[3] CNRS,Section de Mathématiques
[4] Institute of the Information Transmission Problems,undefined
[5] RAS,undefined
[6] Université de Genève,undefined
来源
Communications in Mathematical Physics | 2015年 / 336卷
关键词
Partition Function; Random Walk; Invariance Principle; Liouville Operator; Compact Embedding;
D O I
暂无
中图分类号
学科分类号
摘要
We prove an invariance principle for a class of tilted 1 + 1-dimensional SOS models or, equivalently, for a class of tilted random walk bridges in Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}_+}$$\end{document}. The limiting objects are stationary reversible ergodic diffusions with drifts given by the logarithmic derivatives of the ground states of associated singular Sturm–Liouville operators. In the case of a linear area tilt, we recover the Ferrari–Spohn diffusion with log-Airy drift, which was derived in Ferrari and Spohn (Ann Probab 33(4):1302—1325, 2005) in the context of Brownian motions conditioned to stay above circular and parabolic barriers.
引用
收藏
页码:905 / 932
页数:27
相关论文
共 50 条
  • [1] Invariance principle for diffusions in random environment
    Struckmeier, S.
    CONDENSED MATTER PHYSICS, 2008, 11 (02) : 275 - 282
  • [2] A SOBOLEV INEQUALITY AND THE INDIVIDUAL INVARIANCE PRINCIPLE FOR DIFFUSIONS IN A PERIODIC POTENTIAL
    Ba, Moustapha
    Mathieu, Pierre
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (03) : 2022 - 2043
  • [3] Invariance principle for symmetric diffusions in a degenerate and unbounded stationary and ergodic random medium
    Chiarini, Alberto
    Deuschel, Jean-Dominique
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1535 - 1563
  • [4] Invariance Principle on the Slice
    Filmus, Yuval
    Kindler, Guy
    Mossel, Elchanan
    Wimmer, Karl
    31ST CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC 2016), 2016, 50
  • [5] Invariance Principle on the Slice
    Filmus, Yuval
    Kindler, Guy
    Mossel, Elchanan
    Wimmer, Karl
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2018, 10 (03)
  • [6] Invariance principle in a bilinear model with weak nonlinearity
    Lifshits M.A.
    Journal of Mathematical Sciences, 2006, 137 (1) : 4541 - 4545
  • [7] Strong invariance principle for a counterbalanced random walk
    Tan, Hui-qun
    Hu, Zhi-shui
    Dong, Liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2024, 39 (02) : 370 - 380
  • [8] Random mass splitting and a quenched invariance principle
    Banerjee, Sayan
    Hoffman, Christopher
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (02) : 608 - 627
  • [9] Defending the beauty of the Invariance Principle
    Barkana, Itzhak
    INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (01) : 186 - 206
  • [10] An Invariance Principle for Triangular Arrays
    Anthony D'Aristotile
    Journal of Theoretical Probability, 2000, 13 : 327 - 341