Characterization of Inner Product Spaces by Strongly Schur-Convex Functions

被引:0
作者
Mirosław Adamek
机构
[1] University of Bielsko-Biala,Department of Mathematics
来源
Results in Mathematics | 2020年 / 75卷
关键词
Inner product space; Schur-convex; strongly Schur-convex; Wright-convex; strongly Wright-convex; Primary 46C15; Secondary 26B25; 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
Involving the notion of strongly Schur-convex functions we give a new characterization of inner product spaces among norm spaces. We also present a representation theorem for functions which generate strongly Schur-convex sums.
引用
收藏
相关论文
共 28 条
  • [1] Azócar A(2011)On strongly midconvex functions Opusc. Math. 31 15-26
  • [2] Gimenez J(2016)On a problem connected with strongly convex functions Math. Inequal. Appl. 19 1287-1293
  • [3] Nikodem K(2019)On Jensen-type inequality for Math. Inequal. Appl. 22 1355-1364
  • [4] Sánchez JL(1992)-convex functions Int. J. Math. Math. Sci. 15 31-34
  • [5] Adamek M(1992)Some remarks on inequalities that characterize inner product spaces Arch. Math. (Brno) 35 21-27
  • [6] Adamek M(2010)Characterizations of inner product spaces through an isosceles trapezoid property J. Math. Anal. Appl. 371 677-681
  • [7] Alfonso J(2018)A characterization of inner product spaces related to the Bull. Iran. Math. Soc. 44 1337-1349
  • [8] Alsina C(1935)-angular distance Ann. Math. 36 719-723
  • [9] Cruells P(1932)Jensen’s and Hermite–Hadamard’s type inequalities for lower and strongly convex functions on normed spaces Publ. Math. Univ. Belgrade 1 145-148
  • [10] Tomas MS(1987)On inner products in linear metric spaces Rad. Mat. 36 267-279