Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations

被引:0
作者
Tongxing Li
Yuriy V. Rogovchenko
机构
[1] Linyi University,LinDa Institute of Shandong Provincial Key Laboratory of Network Based Intelligent Computing
[2] Linyi University,School of Informatics
[3] University of Agder,Department of Mathematical Sciences
来源
Monatshefte für Mathematik | 2017年 / 184卷
关键词
Oscillation; Neutral differential equation; Emden–Fowler type equation; Second-order; Superlinear; 34K11;
D O I
暂无
中图分类号
学科分类号
摘要
We study oscillatory behavior of solutions to a class of second-order superlinear Emden–Fowler neutral differential equations. New oscillation theorems are presented and their efficiency is illustrated.
引用
收藏
页码:489 / 500
页数:11
相关论文
共 15 条
[1]  
Agarwal RP(2014)Oscillation of second-order Emden–Fowler neutral delay differential equations Ann. Mat. Pura Appl. (4) 193 1861-1875
[2]  
Bohner M(1955)On second-order nonlinear oscillations Pac. J. Math. 5 643-647
[3]  
Li T(2011)Oscillation theorems for second-order nonlinear neutral differential equations Comput. Math. Appl. 62 4472-4478
[4]  
Zhang C(2013)Oscillation theorems for second-order superlinear neutral differential equations Math. Slovaca 63 123-134
[5]  
Atkinson FV(1997)The generalized Emden–Fowler equation Sym. Nonlinear Math. Phys. 1 155-163
[6]  
Baculíková B(1978)An integral criterion for oscillation of linear differential equations of second-order Mat. Zamet. 23 249-251
[7]  
Džurina J(2004)Oscillation criteria for second order superlinear neutral delay differential equations Electron J. Qual. Theory Differ. Equ. 2004 1-22
[8]  
Baculíková B(1975)On the generalized Emden–Fowler equation SIAM Rev. 17 339-360
[9]  
Li T(undefined)undefined undefined undefined undefined-undefined
[10]  
Džurina J(undefined)undefined undefined undefined undefined-undefined