On multivariable proper rational interpolation using coprime factors

被引:0
作者
Gy. Michaletzky
A. Gombani
机构
[1] Eötvös Loránd University,
[2] IEIIT-CNR,undefined
来源
Mathematics of Control, Signals, and Systems | 2018年 / 30卷
关键词
Interpolation; Rational functions; Coprime polynomials; 15A18; 15A24; 26C15; 41A20; 93B05;
D O I
暂无
中图分类号
学科分类号
摘要
We analyse and construct the matrix-valued proper rational solutions of the tangential interpolation problem. We show how the coprime polynomial factorization of the solutions is tightly connected to the controllability indices of a pair (A,[U,V])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathscr {A}},[U,V])$$\end{document} associated with the interpolation data and that coprimeness of these factorizations is guaranteed by a simple condition on the eigenvectors of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Quadratic/Linear Rational Spline Interpolation
    Ideon, Erge
    Oja, Peeter
    MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (02) : 250 - 259
  • [22] ON SOLVABILITY OF INTERPOLATION PROBLEM FOR RATIONAL FUNCTIONS
    Cherednichenko, V. G.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2014, 11 : C156 - C160
  • [23] Linear/Linear Rational Spline Interpolation
    Ideon, E.
    Oja, P.
    MATHEMATICAL MODELLING AND ANALYSIS, 2010, 15 (04) : 447 - 455
  • [24] Tetrahedral Cm interpolation by rational functions
    Xu, GL
    Chu, CI
    Xue, WM
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 19 (02) : 131 - 138
  • [25] Adaptive rational interpolation for point values
    Arandiga, Francesc
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 349 : 212 - 224
  • [26] An interpolation algorithm for orthogonal rational functions
    Van Deun, J
    Bultheel, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 164 : 749 - 762
  • [27] Direction-of-Arrival Estimation of Coherent Signals via Coprime Array Interpolation
    Zheng, Zhi
    Huang, Yixiao
    Wang, Wen-Qin
    So, Hing Cheung
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 585 - 589
  • [28] Coprime Array Interpolation for Direction of Arrival Estimation Based on Atomic Norm Minimization
    Tang, Wen-Gen
    Jiang, Hong
    Pang, Shuai-Xuan
    2019 IEEE RADAR CONFERENCE (RADARCONF), 2019,
  • [29] Chebyshev Approximation of Multivariable Functions by a Constrained Rational Expression
    Malachivskyy, P. S.
    Melnychok, L. S.
    Pizyur, Ya. V.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2023, 59 (01) : 146 - 155
  • [30] Barycentric rational interpolation with asymptotically monitored poles
    Baltensperger, Richard
    NUMERICAL ALGORITHMS, 2011, 57 (01) : 67 - 81