Lions-type compactness and Rubik actions on the Heisenberg group

被引:0
作者
Zoltán M. Balogh
Alexandru Kristály
机构
[1] Mathematisches Institut,Department of Economics
[2] Universität Bern,undefined
[3] Babeş-Bolyai University,undefined
来源
Calculus of Variations and Partial Differential Equations | 2013年 / 48卷
关键词
35R03; 35A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove a Lions-type compactness embedding result for symmetric unbounded domains of the Heisenberg group. The natural group action on the Heisenberg group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{H}^n=\mathbb{C}^n \times \mathbb{R}}$$\end{document} is provided by the unitary group U(n) × {1} and its appropriate subgroups, which will be used to construct subspaces with specific symmetry and compactness properties in the Folland-Stein’s horizontal Sobolev space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${HW_0^{1,2}(\mathbb{H}^n)}$$\end{document}. As an application, we study the multiplicity of solutions for a singular subelliptic problem by exploiting a technique of solving the Rubik-cube applied to subgroups of U(n) × {1}. In our approach we employ concentration compactness, group-theoretical arguments, and variational methods.
引用
收藏
页码:89 / 109
页数:20
相关论文
共 28 条
[1]  
Ambrosetti A.(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
[2]  
Rabinowitz P.H.(2002)Polar coordinates in Carnot groups Math. Z. 241 697-730
[3]  
Balogh Z.M.(1995)Positive solutions for a semilinear equation on the Heisenberg group Boll. Un. Mat. Ital. B (7) 9 883-900
[4]  
Tyson J.T.(2003)A negative answer to a one-dimensional symmetry problem in the Heisenberg group Calc. Var. 18 357-372
[5]  
Biagini S.(1993)Infinitely many nonradial solutions of a Euclidean scalar field equation J. Funct. Anal. 117 447-460
[6]  
Birindelli I.(1983)A compactness lemma Nonlinear Anal. 7 381-385
[7]  
Lanconelli E.(1974)Estimates for the Commun. Pure Appl. Math. 27 429-522
[8]  
Bartsch T.(1992) complex and analysis on the Heisenberg group Indiana Univ. Math. J. 41 71-98
[9]  
Willem M.(2004)Existence and nonexistence results for semilinear equations on the Heisenberg group J. Funct. Anal. 214 428-449
[10]  
Esteban M.(2010)The principle of symmetric criticality for non-differentiable mappings Commun. Appl. Anal. 14 251-272