Generalized φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-Pullback Attractors for Evolution Processes and Application to a Nonautonomous Wave Equation

被引:0
作者
Matheus C. Bortolan [1 ]
Tomás Caraballo [2 ]
Carlos Pecorari Neto [1 ]
机构
[1] Universidade Federal de Santa Catarina (UFSC),Departamento de Matemática, Centro de Ciências Físicas e Matemáticas
[2] Universidad de Sevilla,Departamento de Ecuaciones Diferenciales y Análisis Numérico
关键词
Generalized ; -pullback attractors; -Pullback ; -dissipativity; Nonautonomous wave equation; Evolution processes; Pullback attractors; 35B41; 35L20; 37L25;
D O I
10.1007/s00245-024-10133-6
中图分类号
学科分类号
摘要
In this work we define the generalizedφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-pullback attractors for evolution processes in complete metric spaces, which are compact and positively invariant families, that pullback attract bounded sets with a rate determined by a decreasing function φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} that vanishes at infinity, called decay function. We find conditions under which a given evolution process has a generalized φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-pullback attractor, both in the discrete and in the continuous cases. We present a result for the special case of generalized polynomial pullback attractors, and apply it to obtain such an object for a nonautonomous wave equation.
引用
收藏
相关论文
共 27 条
[1]  
Bortolan MC(2014)Structure of attractors for skew product semiflows J. Differ. Equ. 257 490-522
[2]  
Carvalho AN(2006)Pullback attractors for asymptotically compact non-autonomous dynamical systems Nonlinear Anal. 64 484-498
[3]  
Langa JA(2013)Pullback exponential attractors for evolution processes in Banach spaces: theoretical results Commun. Pure Appl. Anal. 12 3047-3071
[4]  
Caraballo T(2014)Pullback exponential attractors for evolution processes in Banach spaces: properties and applications Commun. Pure Appl. Anal. 13 1141-1165
[5]  
Łukaszewicz G(1967)Nonautonomous differential equations and topological dynamics. I. The basic theory Trans. Am. Math. Soc. 127 241-262
[6]  
Real J(1967)Nonautonomous differential equations and topological dynamics. II. Limiting equations Trans. Am. Math. Soc. 127 263-283
[7]  
Carvalho AN(1986)Compact sets in the space Ann. Mat. 146 65-96
[8]  
Sonner S(2023)Long-time dynamics of the wave equation with nonlocal weak damping and super-cubic nonlinearity in 3-d domains, part ii: Nonautonomous case Appl. Math. Optim. 88 1-38
[9]  
Carvalho AN(2017)Global exponential Discret. Contin. Dyn. Syst. 37 3487-3502
[10]  
Sonner S(2020)-dissipative semigroups and exponential attraction J. Math. Anal. Appl. 490 935-undefined